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reliable estimation of attitude and IMU biases estimates is
the key to maintaining high precision navigation performance
in GPS-challenged environments because the INS uses the
corrected IMU data to integrate through GPS time-intervals
when few (if any) satellite signals are received.

The results of the CRT estimator using code and integer-
free phase are shown in Figs. 6 and 7. Fig. 6 shows the INS
errors (position, velocity, attitude and IMU biases) of the CRT
estimator with the reported ±3σ bounds. The estimator starts
at t = 5 sec. The vehicle is stationary at the beginning with
forward acceleration starting at t ≈ 8 sec. Note that the yaw
which is not observable prior to t = 5, has error < 1◦ by t =
10 sec. The results show that (typically) the position error is
within ±0.5 m in the horizontal plane (north and east direction),
the velocity error is within ±0.01 m/s and the roll and pitch
errors are within ±0.2◦ and the yaw errors are within ±1◦.
The number of satellites versus time is also shown and per-
formance is maintained throughout. The reported ±3σ bounds
also correctly reflect the uncertainty of errors. Fig. 7 shows the
histogram of errors (position, velocity and attitude) of the CRT
estimator along the trajectory. The first 10 seconds are excluded
from the histogram to prevent the presentation being skewed by
the errors in the initial state (e.g., yaw).

Fig. 8 displays the CRT position estimation errors in blue
when only pseudorange is used and in red when both pseudo-
range and integer-free phase are used. The estimated trajec-
tory using the integer-free phase measurement is in general
smoother than only using the code measurements. From this
comparison, we can see that the integer-free phase measure-
ments are able to improve the robustness of estimator to
pseudorange multi-path error and noise. This robustness derives
from the kinematic constraints imposed by the integer-free
phase measurements, which prevent the large changes in the
position estimates that could otherwise result from code multi-
path errors.

To gain insight into the status of the CRT estimator, several
key variables are plotted in Fig. 9 versus the GPS epoch counter.
The figure shows the total number of iterations ζ, the cost
reduction ΔCζ , the final cost Cζ , the final value of ‖η‖2
in the optimization. Immediately after initialization, it takes
more iterations per time step to converge from the initial x0

to an estimate x̂ such that δx lies within the unobservable
space. Due to the initial inaccuracy of x0, the error within the
unobservable space may still be large. For example, the yaw
is still completely unknown, until the vehicle accelerates. At
this time, when the bias and attitude errors become observable,
the effect of nonlinearities can be very significant; this is
demonstrated by the number of iterations again increasing. It is
the fact that the unobservable subspace changes, that allows the
attitude and bias vectors to be more accurately estimated. Note
from Fig. 6 that yaw is accurately estimated, within 1 degree,
quickly after the vehicle accelerates, without any form of mag-
netometer. After the trajectory estimate becomes accurate, the
optimization needs fewer iterations to converge. The final value
of ‖η‖2 is always less than the termination threshold ε = 10−3.
The vector η is a projection of the residual vector onto a
subspace with the same dimension as δX, see eqns. [(18)–(21)];
therefore because Λ is nonsingular, the final norms of δX and

Fig. 7. Error histograms (position, velocity and attitude) for the entire tra-
jectory (10 sec–500 sec). The CRT estimator uses pseudorange and integer-
free phase measurements. The y-axis is the percentage. (a) The histogram of
position errors. (b) The histogram of velocity errors. (c) The histogram of
attitude errors.

η should both be near zero when the trajectory estimate is near
any local minimum of the cost function C(X). The fact that
final cost reduction ΔCζ is always positive indicates that the
optimization improves accuracy and does not jump to a worse
local minimum (if one exists).
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Fig. 8. North and East position error comparison for CRT estimator with and
without integer-free phase measurements.

Fig. 9. The total number of iterations ζ , the final cost reduction ΔCζ , the final
cost Cζ , and the final value of ‖η‖2 in the optimization.

The final cost Cζ is also given as a reference. In practice, in-
consistent GPS data, possibly caused by multi-path or overhead
trees, could explain the large values of Cζ as is shown near time
200 sec and 350 sec. For example, Fig. 10 shows the histogram
of the twenty-six integer-free phase residuals [see eqn. (42)]
over the 10 second CRT window after optimization converges
at time 205 sec. The measurement that has the residual error

Fig. 10. The histogram of the posterior CRT window phase residuals (eqn.
(46)) at time 205 sec.

around −0.025 m is suspicious and could be removed by fault
detection methods. Note that the cost in Fig. 9 defined in
eqn. (29) weights the residual from Fig. 10 by its inverse
covariance, which accounts for the large difference in the
scales of the two plots. The opportunity of removing suspicious
measurements and recomputing the trajectory estimate is an
advantage of the CRT estimator. Such outlier detection methods
are an interesting topic for future research.

VIII. CONCLUSIONS AND FUTURE WORK

This paper has proposed a novel DGPS/IMU integration
approach that significantly improves performance, compared to
EKF solutions. Such performance improvement is especially
needed in urban environments. The new algorithm performs
optimization in real-time, optimally combining all IMU and
GPS measurement within a time window, to provide a real-
time state estimate at the current time. The approach leads to
improved performance for a few reasons. First, optimization
over the CRT time window provides the capability to re-
linearize the system kinematic and measurement models around
the improved trajectory estimate. Multiple iterative optimiza-
tion steps converge to the minimum of the nonlinear MAP
problem. This provides the ability to estimate attitude and
biases, even yaw, accurately without a magnetometer, once
they become observable. Second, the large set of residual data
within each CRT window provides sufficient redundancy to
allow the effects of noise to be significantly reduced in the
optimization. In addition, it allows the detection of anomalous
measurements, by RAIM type techniques, so that they can be
eliminated from the measurement set. Those methods have not
been presented herein, but are an important topic for future
work. Third, the proposed integer-free phase measurement is
able to provide accurate local kinematic constraints, without
resolving the integers, which helps to improve the robustness
to multipath errors and GPS noise, which are common in urban
environments.

In addition to presenting the improved approach, this arti-
cle has presented and analyzed data from an application of
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this method to a test trajectory using L1-only GPS measure-
ments. The experimental data analysis demonstrated several
points. The CRT navigation system is able to reliably achieve
sub-meter (often decimeter) positioning accuracy in a GPS-
challenged urban environment. The CRT approach calibrates
the attitude and biases rapidly following initial acceleration,
which then allows the approach to maintain state accuracy
through periods with few satellites. Use of the integer-free
phase measurements in the CRT approach yields a smoother
trajectory than the pseudorange only solution.

There are a variety of possible directions for future work to
improve the performance of the proposed system:

• Develop and demonstrate reliable methods to check the
measurement residuals to reject outliers.

• Develop real-time algorithms that allow correct model-
ing of the correlation between satellites in the integer-
free measurements. This was ignored in this paper. One
approach is to add the receiver clock bias into the state
vector to avoid the double-differencing, thus avoiding
introducing the correlation between satellites.

• Develop CRT methods to reliably resolve the integer am-
biguity to achieve centimeter positioning accuracy using
single frequency receivers. The CRT framework has the
potential to increase the success rate of real-time integer
ambiguity resolution.

• Construct the optimal integer-free phase tracks Ξ in the
CRT window to maximize the information extracted from
phase measurements.

• Test the algorithm using data from a low-cost, single-
frequency receiver to evaluate robustness to the noisy
signal, and also reception from a low-cost GPS antenna.

• Augment additional states per satellite to model GNSS
time correlate measurement errors such as multipath.

APPENDIX

We prove the eqn. (16) in this appendix. The X̄ is the vehicle
trajectory, the U is the set of IMU measurements and the Y is
the set of aiding sensor measurements.

p(X̄,U,Y) (47)

= p(X̄,U)p(Y | X̄,U) (48)

= p(X̄,U)p(Y | X̄) (49)

= p(X̄,U)
∏

(i,j)∈Y
p (yij |x(ti)) (50)

= p (x(t0))
k−1∏
i=0

p (x(ti+1)|x(ti),Ui)
∏

(i,j)∈Y
p (yij |x(ti)) .

(51)

Eqn. (48) is obtained by applying the definition of conditional
probability. Eqn. (49) is obtained by applying the conditional
independence property. Eqn. (50) is obtained by assuming the

noise affecting the sequence of measurements is independent.
Eqn. (51) is obtained by assuming Markov process and time
independence of process noise.
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