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Abstract—In the last decade, vehicular ad hoc networks
(VANETs) have been widely studied as an effective method for
providing wireless communication connectivity in vehicular trans-
portation systems. In particular, vehicular cloud systems (VCSs)
have received abundant interest for the ability to offer a variety of
vehicle information services. We consider the data dissemination
problem of providing reliable data delivery services from a cloud
data center to vehicles through roadside wireless access points
(APs) with local data storage. Due to intermittent wireless connec-
tivity and the limited data storage size of roadside wireless APs,
the question of how to use the limited resources of the wireless
APs is one of the most pressing issues affecting data dissemination
efficiency in VCSs. In this paper, we devise a vehicle route-based
data prefetching scheme, which maximizes data dissemination
success probability in an average sense when the size of local
data storage is limited and wireless connectivity is stochastically
unknown. We propose a greedy algorithm and an online learning
algorithm for deterministic and stochastic cases, respectively, to
decide how to prefetch a set of data of interest from a data center
to roadside wireless APs. Experiment results indicate that the
proposed algorithms can achieve efficient data dissemination in a
variety of vehicular scenarios.

Index Terms—Data dissemination, greedy algorithm, online
learning, roadside wireless access point (AP), vehicular ad hoc
networks (VANETs), vehicular cloud system (VCS).

I. INTRODUCTION

IN the last decade, vehicular ad hoc networks (VANETs)
have been widely studied as a method for incorporating

wireless communication capabilities in vehicular transportation
systems for safety, energy, and comfort issues [1]. VANETs
consist of two types of nodes, i.e., mobile vehicles and sta-
tionary roadside wireless access points (APs); the wireless APs
serve as an infrastructure for network connectivity in VANETs.
In VANETs, vehicle-to-vehicle (V2V), infrastructure-to-
vehicle (I2V), and vehicle-to-infrastructure (V2I) communica-
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tions are defined, depending on the direction of traffic flow [2].
While V2V is primarily used for exchanging immediate driving
information among neighboring vehicles on the road for safety
purposes, I2V and V2I aim for data delivery services from/to
the Internet through the roadside wireless APs in VANETs.

The vehicular cloud system (VCS) is a new emerging tech-
nology that can provide cloud services for various vehicle
information applications such as multimedia streaming, au-
tonomous navigation services, and remote vehicle diagnosis.
The infrastructure for VCS consists of high-performance cloud
servers at a data center and a number of roadside wireless APs
with limited-sized local data storage. If an application requires
high computational power or an extensive amount of data
storage, it is more desirable to be implemented and executed as
a cloud service of VCS because vehicles may have insufficient
data processing and storage capability to run such a heavy
application in a standalone manner [3]. When a vehicle needs
data delivery and computing services for vehicle information
applications, it uses the roadside wireless APs to contact the
cloud servers. Moreover, the cloud server can perform com-
putationally intensive tasks and disseminate output data to the
vehicular subscriber. While the roadside APs are connected to
the cloud servers through wired links, the connection between
the vehicles and the wireless APs is intermittently available
as the vehicle enters and leaves the service coverage areas of the
wireless APs. Thus, owing to vehicle mobility and intermittent
connectivity, data dissemination to mobile vehicles through the
roadside wireless APs is a challenging problem for successful
implementation of VCSs [4].

We concentrate our attention on the problem of how to
exploit the local data storage of roadside wireless APs for
efficient data dissemination within the VCS. For illustration,
we consider a data dissemination scenario for VCS, as shown
in Fig. 1. Suppose a vehicle requests cloud data and the routing
path is determined in advance. All of the wireless APs located
on the path of the vehicle fetch the data from the cloud servers
and attempt to transmit it to the vehicle when the wireless
link to the vehicle is established. This approach can achieve
the highest data delivery success probability; however, it is not
practically applicable because the size of local storage in each
wireless AP is too small to store all of the data requested by
multiple vehicles at the same time. Note that the number of data
chunks that can be prefetched from a cloud server at a single
time point is limited by the wired link capacity of the wireless
AP, despite the fact that the AP has a large storage capacity. For
example, consider a multimedia streaming service. If a wireless
AP has a gigabit Ethernet link with 128-GB solid-state drive
storage, it can prefetch 75 100-MB video clips every minute
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Fig. 1. Vehicle route and roadside-wireless-AP-based data dissemination
scenario for a VCS.

and can store 2560 video clips. In such a case, with respect
to dissemination efficiency, it is more desirable to fetch the
data requested by more than two vehicles to the wireless APs
located on the intersection of multiple paths rather than that
requested by only one vehicle. For example, if vehicles A and
B request the same vehicular cloud service, as shown in Fig. 1,
it is desirable that AP 5 has the data chunk and transmits it to the
vehicles because both vehicles pass by AP 5. It is also important
to consider that vehicles have connectivity to wireless APs
only when they stay for at least a certain time interval within
the service coverage area of the roadside APs; moreover, the
connectivity is susceptible to the time-varying wireless channel.

In this paper, we devise a vehicle route-based data prefetch
framework for data dissemination in VCS, which maximizes
the aggregate dissemination success probability in an average
sense when the size of local data storage is limited, and wireless
connectivity is stochastically unknown. We formulate this data
dissemination as a binary optimization problem, for which the
optimal solution can be obtained by a deterministic combinato-
rial algorithm. We propose a greedy algorithm and analyze its
approximate worst-case performance bound. We also propose
an online learning algorithm based on multiarmed bandits
(MABs) to maximize the aggregate dissemination success prob-
ability in an average sense by capturing the unknown stochastic
characteristics of wireless connectivity. The proposed data dis-
semination scheme is applicable to delay-tolerant vehicular data
services such as entertainment content distribution, navigation
data updates, and online travel guide services.

The rest of this paper is organized as follows. First, we
present a survey of related work in Section II. In Section III, we
describe the system models and assumptions for data dissem-
ination of VCSs. In Section IV, we formulate a data dissem-
ination problem that maximizes the aggregate dissemination
success probability and propose a greedy algorithm and an
online learning algorithm for deterministic and stochastic cases,
respectively. In Section V, we show numerical experiment
results, followed by conclusions in Section VI.

II. RELATED WORK

The data dissemination research for VANETs is summarized
into the two categories of V2V and V2I/I2V communications.
The data dissemination research for V2V communications fo-
cuses on how to achieve reliable and timely data delivery among
mobile vehicles on roads over intermittently connected wireless
links [5]–[10]. In [5], the data-pouring algorithm with intersec-
tion buffering was proposed. The vehicles at intersections keep
the data sent by the source node in their buffers and repeatedly
rebroadcast it to other vehicles passing the intersection. In [6],
the route information of vehicles, which is readily available
through the Global Positioning System (GPS)-enabled naviga-
tion system in the vehicles, is used for alleviating channel con-
gestion in data dissemination by selecting appropriate routing
paths. In [7], the relative distance between neighboring mobile
vehicles is predicted and exploited for improving reliability of
data delivery. In [8], Schwartz et al. proposed adaptive network
load control for fair data dissemination in VANETs. In [9],
Ye et al. studied a peer-to-peer data dissemination problem and
proposed a network-coding-based data broadcasting scheme for
improving data reception efficiency. The dissemination com-
plete time and steady-state data dissemination velocity for the
peer-to-peer data dissemination were also mathematically ana-
lyzed in [9]. In [10], Sathiamoorthy et al. investigated V2V data
sharing using erasure codes for reducing data dissemination
latency in vehicular networks. In particular, they focused on
the problem of how to store erasure coded data in vehicles to
maximize V2V collaboration opportunities.

The data dissemination for V2I and I2V communications
focuses on how to efficiently share the limited resource of
roadside APs to improve the quality of data dissemination
services. In [11], Liang et al. proposed a cooperative data dis-
semination approach. At the network level, network resources
were cooperatively managed to satisfy the quality-of-service
requirements for realtime and nonrealtime traffic. At the packet
level, cooperative transmission for the sake of increasing the
high packet transmission rate was proposed. In [12], rateless
coding technology was applied at roadside wireless APs to
improve the efficiency of data dissemination.

In I2V data dissemination, two important factors that sig-
nificantly affect the data dissemination performance are the
limited buffer size of roadside wireless APs and the intermittent
connectivity between the wireless APs and mobile vehicles
[13]–[16]. In [13], a hybrid data dissemination assisted by
static nodes was proposed. When there are no vehicles that can
deliver the data along a routing path, static nodes located at
road intersections keep the data and forward it when the routing
path becomes available. In [14], wireless transmission charac-
teristics for sending and receiving large amounts of data from a
moving vehicle to the roadside wireless APs were empirically
investigated. In [15] and [16], a wireless measurement study
for vehicles under different driving conditions was carried out.
In [17], Jeong et al. proposed an infrastructure-based data dis-
semination that utilizes the trajectory of the vehicles for which
the packets with a delay constraint are destined. As a vehicle
is moving along a predetermined route path, one of the relay
nodes on the path is dynamically selected as the destination for
each requested data packet such that the packet delivery delay
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is minimized while satisfying the packet reception probability
requirement. While the work in [17] mostly focused on data
delivery latency rather than data dissemination efficiency for the
roadside wireless APs with limited storage capacity, we con-
sider an I2V VANET scenario where there exists a constraint
on the storage size of roadside wireless APs and the network
connectivity is intermittently available and propose a determin-
istic greedy algorithm and an online-learning-based algorithm
to achieve high data dissemination efficiency in VANETs.

The data dissemination method for VCS has some sim-
ilarities with Web caching strategies adopted for enhancing
local access to popular Internet contents via proxy servers.
Depending on user Web access patterns and network topology,
the Web caching strategies aim to find the best place for Web
proxies on the network and allow the proxies to cache popular
contents for reducing user access latency and the amount of
Internet access traffic [18]. In [19], Li et al. studied an optimal
placement of Web proxies among candidate sites in a tree-
based network topology to minimize the latency for target Web
services. They modeled the optimal placement problem as a
dynamic programming problem, and the optimal solution could
be obtained in polynomial time. In [20], Qui et al. studied an
online placement problem of Web server replicas under im-
perfect information about client workload characteristics. They
formulated the placement problem as a minimum K-median
graph-theoretic problem and devised algorithms for minimizing
the client cost of accessing data replicated on Web servers. In
[21], Nimkar et al. focused on how to place multiple copies of
video files on distributed proxy servers for video-on-demand
services and devised greedy video placement and disk load-
balancing algorithms.

The data dissemination for VCS is also related to the problem
of allocating virtual computing and storage resources in large-
scale distributed systems such as grid and cloud computing
environments. In [22], Giurgiu et al. dealt with the problem
of how to efficiently manage virtual network infrastructures in
large-scale data centers while guaranteeing resource and avail-
ability requirements. To make the optimization problem more
tractable, they reduced the searching space for optimization by
specifying feasible subsets of computing nodes as the candidate
sites and used a graph-based search algorithm for finding the
optimal placement of virtual machines. In [23], a multiobjective
ant-colony system algorithm was adopted to find the optimal
placement of virtual machines that can minimize the aggregate
power and resource consumption in cloud infrastructures.

Our data dissemination method is similar to Web caching/
proxy methods in that both deal with a distributed cache/
storage-based data dissemination problem. The distributed mul-
tiple cache/storage devices store a certain amount of contents to
expedite the service response and to reduce the traffic amount to
be downloaded from the central data server. However, there are
significantly challenging issues that need to be resolved for data
dissemination in vehicular network environments, as follows.

• Most Web caching/proxy methods focus on maximizing
the hit rate of individual proxy servers for certain content
request statistics. Our VCS is formulated such that it guar-
antees that vehicular subscribers receive the data service

successfully from at least one roadside AP while they pass
by multiple APs during their traveling time.

• Web caching/proxy methods are usually designed under
the assumption that proxy servers provide services to their
users through a reliable link without significant loss of
data. In our VCS, the vehicular subscribers communicate
with roadside wireless APs through an unreliable wireless
link. It is assumed that the connectivity is intermittently
available, and its distribution is stochastically unknown in
advance. The stochastic characteristics of wireless con-
nectivity should be taken into consideration for reliable
dissemination services.

• In these vehicular environments, the driving routes of
vehicles are assumed to be predicted or obtained using on-
line navigation. This routing information can be exploited
for improving data dissemination performance. For avail-
able routing information of vehicular subscribers, our
data dissemination method cooperatively manages the
multiple roadside APs on the routes of the subscribers,
depending on their intermittent connectivity distribution
and storage capacity, to maximize the data service success
rate for all data–vehicle pairs.

In fact, various existing Web caching/proxy methods could
be applied for enhancing the dissemination performance in ve-
hicular network environments because VCS can be considered
as a mobile Web caching method that coordinates distributed
roadside storages with network connectivity in a vehicular
network environment.

III. SYSTEM MODEL

We consider a VCS that consists of cloud servers at a data
center and roadside wireless APs with local data storage.
Mobile vehicles have intermittent network connectivity to the
cloud system through the wireless APs, which are connected to
the cloud servers by means of wired infrastructure networks. To
expedite data dissemination to vehicles, each AP can prefetch
some data from the data center before they are requested from
vehicular subscribers. We make the following assumptions for
the VCS.

• The data in a cloud system are divided into a number of
small chunks that are the basic units for data delivery from
the data center to vehicles.

• Each AP is placed at an intersection and has limited
transmission coverage such that a vehicle can download
data chunks of interest only when it stays within the
coverage area for at least a certain amount of time.

• Each AP has a stochastic characteristic for communicat-
ing with the mobile vehicle going through its coverage
region due to limited communication capacity and time-
varying wireless channels.

• For effectively using a data dissemination service, the
driving route of vehicles must be available in advance
from online navigation and long-term archived traces.

Each vehicle that uses VCS has to report its driving route
so that the data dissemination algorithm can find the best
APs belonging to that route. Note that the selected APs will
prefetch data chunks from a cloud server and hold the requested
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TABLE I
PARAMETERS USED FOR MODELING VCSS

chunks requested by a vehicular subscriber. Whenever the route
changes, it has to be reported to the VCS. If a vehicle does
not have a navigation device, its driving route can be predicted
using historical traces.

Given the assumptions outlined above, we first define two
matrices of the chunk request matrix R , the vehicle route
matrix S, and the network connectivity success rate vector � to
describe a VCS. Let u, v, and w denote the numbers of chunks,
vehicles, and wireless APs, respectively. R = ( ri,j )v×u is a
binary matrix where ri,j = 1 when the ith vehicle requests the
jth chunk, and otherwise 0. S = ( si,k )v×w is also a binary
matrix where si,k = 1 when the ith vehicle is expected to go
through the kth wireless AP, and otherwise 0. Finally, � =
(�k )w×1 is a vector where �k represents the average rate of
successful communication between the kth AP and a mobile
vehicle passing by the AP. We summarize the parameters used
for modeling the VCS in Table I.

The data dissemination problem in this paper is to make a
decision on which chunks are to be prefetched to the local
data storages of wireless APs to expedite data dissemination in
the VCS. Let X = ( xi,j )w×u denote a binary decision matrix,
where xi,j = 1 if the jth chunk is to be prefetched to the ith
wireless AP, and otherwise 0. For example, if xi,j = 1 for all
i’s and j’s, it means that all the data chunks are distributed to
every local data storage. In this case, vehicles are supposed to
successfully receive as many requested chunks as possible, but
this may not be efficient because all the chunks are unnecessar-
ily copied to every local storage. In particular, the data storage
capacity of roadside wireless APs is limited, and thus, all of the
data chunks cannot be stored in all the APs.

By using R , S, � , and X , we derive the dissemination failure
probability matrix denoted by P = ( pi,j )v×u , where pi,j is the
probability that the ith vehicle fails to download the jth chunk.
Then, pi,j is given by the product of the probabilities that the
ith vehicle fails to download the jth chunk at every AP that it
goes through as follows:

pi,j = ri,j ×
w�

k=1

hi,j,k (si,k , �k , xk,j ) (1)

where hi,j,k is the probability that the ith vehicle fails to down-
load the jth chunk at the kth AP, and hi,j,k (si,k , �k , xk,j ) =
1 − si,k · �k · xk,j .

IV. PROPOSED DATA PREFETCHING SCHEME

In VCSs, local data storages in roadside wireless APs are
essential resources for expediting data dissemination from a
data center to mobile vehicles. If more wireless APs that are
located on the routes of a vehicle have data chunks, it is
more likely that the vehicle can successfully download the data
chunks. On the other hand, if too excessive data chunks are
transferred to wireless APs, it is a resource waste of local data
storage and may cause an increase in network delay from a
data center to wireless APs. In this paper, we consider an op-
timization strategy that maximizes data dissemination success
probability when the data storage size of each local data storage
is limited. The data dissemination problem is formulated as a
binary maximization over X ∈ {0, 1}w×u .

The objective of the data dissemination problem described in
this paper is to maximize the dissemination success probability
in the VCS. Due to the stochastic characteristics of � in P , it is
not possible to perfectly guarantee data chunk delivery. Instead,
we maximize the dissemination success probability under the
assumption that there exists a maximum boundary (or quantity)
of data storage in roadside wireless APs. Let bi denote the
maximum number of data chunks that can be stored at the local
data storage of the ith AP. Note that bi is also bounded by
the maximum number of data chunks that can be downloaded
from a cloud server during each decision round. Under the
assumption that all APs have the same storage capacity, bi is
set to b for all i = {1, . . . , w}. Then, we impose a constraint on
the selection of the binary decision matrix such that the feasible
candidates are from a finite set Forg , which is represented as
follows:

Forg = {X : X ∈ {0, 1}w×u , ‖X · 1lu‖max ≤ b} (2)

where 1ll ∈ Rl is an all-ones column vector. Let g(X ) denote
the aggregate dissemination success probability for all the
vehicles and data chunks. Then, g(X ) is given by

g(X ) =
v�

i =1

u�

j =1

ri,j · (1 − pi,j ). (3)

We also define a set function ga(AX ) for g(X ), i.e., ga(AX ) =
g(X ), where AX = {(i, j) : xi,j = 1, 1 ≤ i ≤ w, 1 ≤ j ≤ u}
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is the index set for xi,j = 1 in X . The optimal binary decision
matrix X ∗ that maximizes g(X ) is to be selected from Forg as
follows:

X ∗ = arg max
X ∈Forg

g(X ). (4)

A. Deterministic Greedy Data Dissemination for VCS

For simplicity, we first assume that the stochastic characteris-
tics of the network connectivity success rate � between APs and
vehicles are completely observed, thereby being able to exploit
the deterministic statistics for data dissemination. In other
words, the values � = [ �1, . . . , �w ] are completely known to the
data center in advance. Then, the data dissemination problem
is a binary optimization problem, and its optimal solution can
be obtained by a deterministic combinatorial algorithm. One
may attempt to solve this binary optimization by a brute-
search algorithm, which enumerates all possible candidates and
checks whether each candidate satisfies the problem statement.
However, the complexity exponentially grows with respect to
the dimension of X , and thus, it is not scalable and limited in
applicability to small vehicular systems with only a few tens
of (w × u). To make this binary optimization problem more
tractable, we derive the following proposition and then propose
a greedy algorithm based on the proposition.

Proposition 1: For maximizing data dissemination success
probability, a finite set of binary decision matrices can be
reduced as follows:

F = {X : X ∈ {0, 1}w×u ,X · 1lu = b · 1lw}.

Proof: Suppose that an element xy,z ∈ X is 0. When xy,z

is changed from 0 to 1, the variation of the cost function g(X )
in (3) with respect to xy,z is

� v
i =1 ri,z ×

� w\y
k=1(1 − si,k · �k ·

xk,z ) × (si,y · �y ), which is greater than or equal to 0. This
implies that as more elements in X change their value to 1, the
variation of g(X ) is greater than or equal to 0 (the equality holds
when ri,z or si,y is equal to 0 for all i ∈ {1, . . . , v}). This means
that the cost function g(X ) increases over X . Therefore, the
cost function in (4) can be maximized with the largest number
of 1’s in X that satisfies X · 1lu = b · 1lw in the constraint. �

Based on the given proposition, we propose a greedy algo-
rithm that iteratively finds the suboptimal solution on F by
setting one element of X to 1 at each iteration. The detailed pro-
cedure is given in Algorithm 1. The algorithm starts with X ∗

g ,
which is one that gives the largest dissemination success prob-
ability among all the feasible X ’s with |AX | = 3 on line 2.1

Then, at each iteration, the algorithm picks one element xy,z ∈
A1lw×u \ (AX �

g
∪AX C ) maximizing the increment of dissem-

ination success probability, i.e., ga(AX �
g
∪ Ax y,z ) − ga(AX �

g
),

where 1lw×u is an all-ones w × u matrix, and AX C is the index
set for all xi,j ’s in X ∗

g that are 0 but are prohibited from being

1Note that the reason for enumerating all the feasible X ’s with |A X| = 3
in the first iteration is to make it possible to derive an approximation of the
proposed greedy algorithm, as described in Appendix A.

converted into 1 due to the limited storage capacity of the
roadside wireless APs. On line 7, if the number of 1’s in the
yth row of X ∗

g is less than b (i.e., (X ∗
g1lu )y < b, where (a)y

represents the yth element of vector a), then we set the xy,z in
X ∗

g to 1 (i.e., AX �
g

= AX �
g
∪ Ax y,z ). Otherwise, we set xy,z in

X ∗
g to 0 (i.e.,AX C = AX C ∪ Ax y,z ) and repeat the above steps.

This algorithm terminates when the number of 1’s in each row
of X ∗

g is equal to b.
In Algorithm 1, the number of iterations is equal to (w ×

b− 3) because each local data storage in the wireless AP has
b number of 1’s in its corresponding X ’s row. In each iteration
inside the loop, the maximum from the vector of (w × u) needs
to be searched. The evaluation of ga(·) incurs the complexity of
O(v × u) from (3). As a result, the computational complexity
of Algorithm 1 becomes O(w2u2bv), which corresponds to
quadratic complexity with respect to w and u. Although we
assume that all the wireless APs have the same data storage
capacity b in (2), Algorithm 1 can be easily extended to the
case in which the capacities are not the same with no significant
modification. Because the storage capacity of the ith AP is bi ,
the number of iterations for finding the optimal solution is set
to (

� w
i =1 bi − 3). Note that the local data storage of the ith AP

has bi number of 1’s in its corresponding X ’s row.

Algorithm 1 Deterministic greedy data dissemination for
VCS

1: // Initialization
2: X ∗

g = arg maxX ∈{X :X ∈{0,1}w×u,|AX|=3} g(X )
3: AX C = �;
4: // Main loop
5: for l = 4 to w × b do
6: {(y, z)} = arg max {(i,j )}∈A1lw×u\(AX�

g
∪AXC )

7: (ga(AX �
g
∪ Ax i,j ) − ga(AX �

g
));

8: if (X ∗
g1lu )y >= b then

9: AX C = AX C ∪ Ax y,z ;
10: Go back to line 6.
11: end if
12: AX �

g
= AX �

g
∪ Ax y,z ;

13: X ∗
g(y, z) = 1;

14: end for

As greedy algorithms may fail to find the globally optimal
solution, it is necessary to check the worst-case performance
of a greedy algorithm by checking its approximation factor. If
its approximation is bounded by a constant factor, the greedy
algorithm is capable of finding the suboptimal solution in
polynomial time. To derive its approximation, we derive the
following proposition.

Proposition 2: The proposed dissemination problem in (4)
can be transformed into a submodular maximization prob-
lem (SMP).

Proof: Submodularity is an intuitive notion of diminish-
ing returns, which implies that adding an element to a small set
gives more returns than adding that same element to a larger
set [24]. It is defined as follows: A real-valued set function H ,
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which is defined on subsets of a finite set S, is called submodu-
lar if it satisfies

H(B1 ∪ s) −H(B1) ≥ H(B2 ∪ s) −H(B2) (5)

for all B1 ⊆ B2 ⊆ S and for all s ∈ S \ B2. To verify submod-
ularity, we consider the problem in (4) as follows:

max
X ∈F

ga(AX ) subject to X 1lu = b · 1lw . (6)

Note that ga(AX ) is also a nondecreasing set function be-
cause g(X ) is a nondecreasing function over X as shown in
Proposition 1. Consider AX 1

⊆ AX 2
⊆ A1lv×u and Ax y,z ∈

A1lw×u \ AX 2
. Then, we have the following:

ga(AX 1
∪Ax y,z ) − ga(AX 1

)

=
v�

i =1

ri,z · si,y · �y · xy,z ·
�

k∈{k |(k,z )∈AX1}
(1−si,k · �k · xk,z)

(7)

where the right-hand side is greater than or equal to zero. Then,
we can show the following inequalities:

�
ga

�
AX 1

∪Ax k�,j�

�
− ga(AX 1

)
	

−
�
ga

�
AX 2

∪Ax k,j�

�
−ga (AX 2

)
	

=
v�

i =1

ri,j � · si,k � · �k � · xk � ,j � ·
�

k∈{k |(k,j �)∈AX1}

× (1 − si,k · �k · xk,j � ) ·




�
� 1 −

�

k∈{k |(k,j �)∈AX2
\AX1}

× (1−si,k · �k · xk,j )




�
� ≥ 0.

(8)

According to (8), the function ga(AX ) is a submodular set func-
tion, and the problem in (6) is an SMP. �

Based on the given proposition, the greedy algorithm is
able to achieve a constant factor (1 − e−1) approximation of
the optimal value of (4). The detailed procedure to achieve
such an approximation bound is described in Appendix A.
However, in practice, it is desirable to deal with the network
connectivity success rate � as a random process because its
statistical property is unknown in advance. In such a case, it
is not possible to directly determine how many data chunks are
prefetched to the local data storages. In the following section,
we propose an alternative way to observe and exploit the
stochastic characteristics of � for maximizing the dissemination
success probability in an average sense.

B. Online-Learning-Based Data Dissemination Algorithm

In this paper, we adopt the stochastic MAB-based online
learning framework presented in [25] to solve the data dissemi-
nation problem in (4). MABs are widely used to solve combina-
torial optimization problems for cost functions with unknown
random variables. The MAB framework gradually learns the
stochastic characteristics of random variables with unknown
distribution and then determines an optimal policy to maximize
the cost function in an average sense. The performance of the
MAB is evaluated by analyzing the regret, which is defined as
the aggregated difference between the maximum costs given by
a globally optimal solution and those by the MAB over time.
If the regret sublinearly increases, it implies that the solution
of the MAB gradually converges to a globally optimal solution
in a certain number of iterations. Here, we propose a MAB-
based online learning algorithm for the data dissemination and
perform the regret analysis to show that the solution of our
proposed algorithm converges to a globally optimal solution.

1) Policy Design: In our data dissemination problem, the
network connectivity success rate � for roadside wireless APs
is a random variable with unknown distribution that changes
over time. Let n be a time index representing a decision
period for online learning iterations and t = ( tk )w×1 denote the
random variables representing network connectivity of the APs,
where �k = E[tk ] for all k = {1, . . . , w}. The proposed MAB-
based online learning algorithm measures the mean network
connectivity success rate � at each decision period and finds
an optimal solution on F that maximizes a cost function with
mean network connectivity success rate. The globally optimal
binary decision matrix X ∗ is given by

X ∗ = arg max
X ∈F

v�

i =1

u�

j =1

ri,j ·
�

1 −
w�

k=1

hi,j,k (si,k , �k , xk,j )

�

.

(9)

The detailed procedure is given in Algorithm 2. The idea for
this algorithm was inspired by [25, Alg. CWF2], which exploits
the information gained from the operation of each action to
determine a dependent action and achieves a logarithmically
growing regret.

Algorithm 2 Proposed online learning algorithm

1: //Initialization
2: n = 0;
3: for p = 1 to w do
4: n := n + 1;
5: Play any arm X ∈ F such that ({(ST R ) 	 X }1lu )p ≥ 1;

6: �′k =

� v

i=1

� u

j=1
r i,j ·(1−h i,j,k(si,k ,t k,x k,j(n )))

({(ST R )	X (n )}1lu)k
,

k = {1, . . . , w}
7: �k = � k ·m k+� �

k·({(ST R )	X (n )}1lu)k

m k+({(ST R )	X (n )}1lu)k
,mk = mk +

({(ST R ) 	 X (n)}1lu )k , k = {1, . . . , w};
8: end for
9: // Main loop
10: while 1 do
11: n := n + 1;
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12: Play any arm X ∈ F , which solves the following maxi-
mization problem:

max
X ∈F

v�

i =1

u�

j =1

ri,j

×




�
� 2 −

w�

k=1

hi,j,k
�
si,k , �k , xk,j

�
−

w�

k=1

× max

�
�

�
hi,j,k




� si,k ,

�
(w + 1) ln n

mk
, xk,j




� , 0

�
�

�




�
�

(10)

13: �′k =

� v
i=1

� u
j=1

r i,j ·(1−h i,j,k(si,k ,t k,x k,j(n )))

({(ST R )	X (n )}1lu)k
,

k = {1, . . . , w}
14: �k =

� k ·m k+� �
k·({(ST R )	X (n )}1lu)k

m k+({(ST R )	X (n )}1lu)k
,mk = mk +

��
(ST R ) 	 X (n)

�
1lu

�
k , k = {1, . . . , w};

15: end while

In Algorithm 2, the initial learning process is performed for
each AP, so that at least one data chunk may be downloaded
from the AP to vehicles. On lines 3–8, at the pth iteration,
an arbitrary binary decision matrix X ∈ F is chosen such
that the number of data chunks downloaded from the pth AP,
which is ({(ST R ) 	 X }1lu )p, is greater than or equal to 1 to
measure and estimate the initial values of the instantaneous
network connectivity success rate �′k and the accumulated
mean network connectivity success rate �k . Subsequently, the
selected arm X (n) is played, and �′k and �k are measured and
updated. The instantaneous network connectivity success rate
� ′ = [ �′1, . . . , �′w ]T is given by

�′k =

� v
i =1

� u
j =1 ri,j · (1 − hi,j,k (si,k , tk , xk,j (n)))

({(ST R ) 	 X (n)} 1lu )k
. (11)

The accumulated mean network connectivity success rate � =
[�1, . . . , �w ]T is updated as follows:

�k =
�k ·mk + �′k ·

��
(ST R ) 	 X (n)

�
1lu

�
k

mk + ( {(ST R ) 	 X (n)} 1lu )k
, k = {1, . . . , w}

(12)

where m = [m1, . . . ,mw ]T is the number of observation times
up to the current iteration for the APs. Based on �, an optimal
binary decision matrix is determined as described in (10) on
line 12. The proposed online learning algorithm iteratively
finds a globally optimal binary decision matrix that maximizes
the aggregate dissemination success probability in an average
sense. Note that �k gradually converges to the actual mean
network connectivity success rate as �k is updated over time.
The proposed online learning algorithm needs two storage units
of size w × 1 to store � and the number of observation times m .

2) Regret Analysis: We perform the regret analysis to show
that the solution of the proposed online learning algorithm
converges to a globally optimal solution in a certain number of

iterations. The regret of the proposed algorithm is an aggregate
discrepancy between the maximum aggregate dissemination
success probabilities by a globally optimal solution and by
the proposed algorithm in Algorithm 2. The regret after N
iterations is given by

R(N ) = N · g(X ∗) −
N�

n =1

g (X (n)) (13)

where g(X ∗) = max X ∈F g(X ) is the maximum aggregate dis-
semination success probability by the optimal binary decision
matrix X ∗.

The regret analysis derives the upper bound of the regret after
N iterations. The upper bound can be obtained as a function of
the upper bound of the number of times for which a nonoptimal
binary decision matrix is selected. Let TNO (N ) denote the
number of times for which a nonoptimal binary decision matrix
is selected for the first N iterations. To show the upper bound of
TNO (N ), we define Tk (N ) as a counter for the kth wireless AP.
Once the online learning algorithm selects a nonoptimal binary
decision matrix, the index j such that j = arg min k∈{1,·,w }mk

is selected, and the corresponding counter Tj (N ) is increased
by 1. If there are more than two indexes, one index is arbitrarily
selected, and the corresponding counter is increased by 1. Then,
only one counter will increment its value when the nonoptimal
binary decision matrix is selected, and the following equation
must hold:

TNO (N ) =
w�

k=1

Tk (N ).

Based on the given equation, the upper bound of regret is
given by

R(N ) ≤ � max ·
�

w�

k=1

Tk (N )

�

(14)

where � max = g(X ∗) − minX ∈F g(X ). Under the given in-
equality, an upper bound of the regret function R(N ) is de-
termined by the upper bound of the counter Tk (N ), which is
given as follows:

E [Tk (N )] ≤ (w + 1) ln N
�2

min

+ 1 +
�2

3
(w2b) (15)

where �min is a constant less than or equal to 1. The detailed
derivation of the upper bound for the counter Tk (N ) is de-
scribed in Appendix B. The upper bound of the regret is as
follows:

R(N ) ≤ � max ·
�
w(w + 1) ln N

�2
min

+ w +
�2

3
(w3b)

�
. (16)

As shown in the given equation, the regret function R(N )
sublinearly increases with respect to the number of iterations.
This sublinear increase implies that the optimal solution of the
proposed algorithm gradually converges to a globally optimal
binary decision matrix after a certain number of iterations.
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3) Comparison With Other Learning Algorithms: While
the proposed algorithm was inspired by [25, Alg. CWF2],
there are two major enhancements in our proposed algorithm.
First, the cost function of the optimization problem in (10)
designed for finding the optimal data dissemination strategy is
too complicated to be solved by the CWF2 algorithm. This is
because the CWF2 algorithm deals with a cost function that
consists of a weighted linear combination where each term is a
function of a single random variable. On the other hand, our
algorithm deals with a more complicated cost function with
nonlinear dependence relations that include the multiplication
of unknown random variables and linear reward terms. Other
online learning algorithms such as UCB1 [26] and LLR [27]
are limitedly applicable when the cost function is a function of
one random variable and is a weighted linear combination of
random variables, respectively.

Second, in the CWF2 algorithm, each arm is associated
with one unknown random variable, and thus, each unknown
random variable can be explored only one time in each decision
period when the online learning algorithm decides to exploit the
corresponding arm. In contrast, our online learning algorithm
can explore multiple unknown random variables several times
in one decision period because each unknown random variable
is associated with multiple arms. As a result, our online learning
algorithm finds the features of unknown random variables more
rapidly than the CWF2 algorithm.

V. PERFORMANCE EVALUATION

A. Experiment Environment

Here, we present the results of real-life vehicle-trace-based
experiments designed to evaluate the efficiency of the proposed
data dissemination methods for VCSs. It is assumed that the
roadside wireless APs are deployed on the intersections of
roads, and the vehicular subscribers drive along routes, which
are guided by a navigation system and are provided to the
cloud service center when the vehicular subscribers request
their cloud services. The vehicular subscribers can commu-
nicate with the APs located nearby at the intersections on
their route.

For vehicle traffic trace, we use GPS traces of 2060 taxis
in Beijing as done in [10].2 We randomly deploy 40 roadside
wireless APs at the intersections as shown in Fig. 2. The
vehicular route matrix S is obtained from the route of vehicular
subscribers where si,j = 1 if the ith vehicular subscriber goes
through the intersection at which the jth AP is deployed. For
data dissemination, it is assumed that the data chunks have
the same size and that the data rates of the APs are identical.
The APs access the wireless channel using IEEE 802.11 DCF.
The network connectivity success rate � = [ �1, · · · , �w ] has a
positive value in the range of [0, 1]. The chunk request matrix
R is randomly set to either 0 or 1 under the assumption that the
vehicular subscribers randomly request data chunks.

2This vehicle trace data set was obtained from research conducted by the
University of Southern California’s Autonomous Networks Research Group:
http://anrg.usc.edu.

Fig. 2. Map of the roadside wireless APs randomly deployed at the intersec-
tions of roads in Beijing.

Fig. 3. Simulation results of network connectivity for different propagation
models and vehicular subscriber densities.

We used the ns-2 network simulator to characterize the
network connectivity distribution of the wireless APs. The
wireless channels of the links from wireless APs to vehicular
subscribers are modeled as either a Rayleigh fading or a shad-
owing model with a path-loss exponent. The path-loss exponent
for the wireless channel varies from 2 to 4. Fig. 3 shows the
simulation results for network connectivity of the 40 wireless
APs for different wireless link models and vehicular subscriber
density. The cumulative density function in Fig. 3 indicates
that the network connectivity heavily depends on both wireless
link characteristics and the number of vehicles passing by the
APs. For each wireless link model, the network connectivity
becomes worse when the number of vehicles increases. In the
shadowing model, the network connectivity becomes worse
when the path-loss exponent increases because the commu-
nication range of APs decreases due to the significant signal
attenuation.
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Fig. 4. Mean dissemination success probability of all vehicle-data chunk pairs
with respect to the number of roadside wireless APs (Rayleigh fading, v=2060).

Fig. 5. Mean dissemination success probability of all vehicle-data chunk pairs
with respect to the number of data chunks (Rayleigh fading, v = 2060).

Fig. 6. Mean dissemination success probability of all vehicle-data chunk pairs
with respect to the size of local data storage (Rayleigh fading, v = 2060).

B. Experiment Results for Deterministic Greedy Data
Dissemination for VCS

Here, we focus on the deterministic greedy data dissemi-
nation algorithm and numerically evaluate its performance in
various data dissemination scenarios. Each point in Figs. 4–9 is
the average value of ten runs for different R ’s.

Fig. 7. Mean dissemination success probability of all vehicle-data chunk pairs
with respect to the storage size for the proposed and the simple caching methods
(Rayleigh fading, v = 2060).

Fig. 8. Mean dissemination success probability of all vehicle-data chunk
pairs with respect to the storage size for different wireless channel models and
vehicular subscriber densities (u = 20).

Fig. 9. Mean dissemination success probability of all vehicle-data chunk pairs
with respect to the data storage size for the proposed greedy and the brute-
search algorithms (Rayleigh fading, v = 2060, u = 6).

Fig. 4 shows the mean dissemination success probability for
different numbers of data chunks with respect to the number of
roadside wireless APs for the case when the roadside wireless
APs are randomly chosen from the 40 APs shown in Fig. 2, and


