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Radar Image Series Denoising of Space Targets
Based on Gaussian Process Regression

Xueru Bai , Member, IEEE, and Xin Peng

Abstract� We address the problem of image series denoising
for high-resolution radar in a nonparametric Bayesian frame-
work. By exploiting the characteristics of amplitude variation
at different pixels in the image series, we impose the Gaussian
process (GP) model to the corresponding time series of each pixel
and achieve effective image series denoising by GP regression.
Particularly, the model parameters are solved conveniently by
the maximum likelihood estimation. Compared with available
denoising techniques in the data domain, spatial domain, and
image frequency domain, the proposed method has exhibited
more �exibility in data description and better performance in
structure preserving and denoising, especially in low signal-to-
noise ratio scenarios.

Index Terms� Denoising, Gaussian process regression (GPR),
high-resolution radar, image series.

I. INTRODUCTION

H IGH-RESOLUTION imaging radar has played vital
roles in space situational awareness and ballistic tar-

gets defense, thanks to its all-weather, day-and-night, long-
range, and high-resolution imaging superiority [1]�[3]. For
ground-based monostatic radar, the received signal power Pr
is proportional to Pt�/R4 B , where Pt is the peak transmitted
power, � is the target radar cross section, R is the slant
range, and B is the signal bandwidth. Therefore, Pr drops
rapidly with the increment of R and B given constant Pt. For
long-distance space targets with small radar cross sections,
e.g., small satellites, the signal-to-noise ratio (SNR) of the
received echoes becomes so low that the target region is still
covered by strong noise even after 2-D coherent accumula-
tion [4], bringing great obstacles to accurate determination of
their size, shape, and orientation.

In addition, space targets are maneuvering during orbiting,
orbital transfer, or attitude adjustment, which can induce
fast-varying, highly nonstationary Doppler spectrum and
invalidate the traditional range-Doppler technique [5], [6].
As a substitution, we perform azimuth accumulation con-
secutively in short time intervals by joint time-frequency
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analysis [7]�[9], e.g., the short-time Fourier transform (STFT)
analysis, to obtain the range-instantaneous-Doppler (RID)
image series. On the one hand, the SNR of a single image
is low due to a limited number of accumulated echoes along
azimuth; on the other hand, the dominant scattering centers
appear consecutively in the image series with regular position
and amplitude variation. Therefore, if we could exploit such
regularities according to the statistical characteristics of scat-
tering centers and noise, then effective denoising of the RID
image series could be achieved.

A. Prior Work

Generally, the available denoising techniques fall into two
categories: 1) data-domain denoising and 2) image-domain
denoising. The �rst category directly performs range or
azimuth denoising to the raw data and then obtains the
high-resolution 2-D image from denoised echoes. Typical
methods include singular value decomposition [10], principal
component analysis [11], independent component analy-
sis [12], wavelet transform [13], empirical mode decompo-
sition (EMD) [14], [15], basis pursuit denoising (BPDN)
[16], [17], and so on. For relatively high SNR, e.g., above
10 dB, the above-mentioned methods achieve satisfying
denoising performance. As the SNR becomes lower, however,
it would be more and more dif�cult in accurately separating
and recovering the signals buried in noise, thus large errors in
the amplitude and phase are induced and the imaging quality
is severely degraded.

The second category �rst performs high-resolution imaging
to the original noisy echoes by matched �ltering, which
can greatly increase the SNR in the image domain. Then,
it applies single-image denoising techniques, e.g., spatial
�ltering and image frequency �ltering, to improve imaging
quality. The spatial-domain �lters mainly include the mean
�lter, the median �lter [18], the Lee �lter [19], and the
Frost �lter [20]. Typically, the Lee �lter suppresses noise
according to the local statistical characteristics of the image,
i.e., the mean and variance of pixel values in the �lter window.
Such a �ler is suitable for noise reduction of the homogenous
area but is incapable of keeping details and texture information
of the inhomogeneous area. In addition, the determination of
the optimal window length remains an open problem.

Image denoising techniques based on image frequency
domain �ltering transforms the single noisy image to the
frequency or the wavelet domain and then suppresses noise

0196-2892 ' 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-9283-1810


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

by frequency �ltering according to different characteristics
of noise and signals. Compared with spatial domain �lter-
ing, such techniques preserve image details to some extent.
Typically, wavelet threshold (WT) denoising [21], [22] sup-
presses the noise-disturbed wavelet coef�cients by setting
a proper threshold. Because such techniques fail to exploit
the statistical characteristics of signals and noise, they lack
�exibility in various noisy environments.

In a nutshell, the data-domain denoising techniques have
unsatisfying performance in low SNR, while the image-
domain denoising techniques only deal with single image and
fail to fully exploit the scattering center and noise distributions
in the image series to achieve effective noise reduction.

B. Contribution

To tackle the above-mentioned problems, this paper pro-
poses a novel method for image series denoising based on
Gaussian process regression (GPR). The key development
includes: 1) a Gaussian process (GP) model is established
for pixels in the RID image series to effectively describe
the amplitude variation with time; 2) the model parameters
are calculated conveniently by maximum likelihood (ML)
estimation; and 3) the proposed method achieves larger peak
SNR (PSNR), structural similarity (SSIM), and visual infor-
mation �delity (VIF) compared with available techniques and
retains the edge and details of the image series to a large extent
through pixel-by-pixel processing.

The remainder of this paper is organized as follows.
Section II establishes the GP model in the noisy RID image
series. Section III proposes the noise reduction method of RID
image series based on GPR and discusses the ML estimation
of model parameters. Section IV evaluates the performance
and demonstrates the effectiveness of the proposed denoising
method in various experiments. Section V concludes this
paper.

II. GP MODELING OF THE NOISY IMAGE SERIES

As a widespread stochastic process, the GP [23], [24]
de�nes a collection of random variables, where the joint
distribution of any �nite combination of variables satis�es the
Gaussian distribution. Based on the Bayesian nonparametric
theory, the parameters of GP change adaptively with the
input data, enabling more �exible data modeling and bet-
ter data-�tting compared to parametric Bayesian techniques.
In this section, we will establish the GP model to the RID
image series. Then, we will derive the GPR model [25], [26] to
perform nonparametric regression at given time instants based
on the noisy observations.

Supposing that there are Nr and Na range and azimuth
cells in the echo matrix, then after range compression,
we perform STFT to the Nr range cells, respectively,
to obtain the time-frequency (i.e., time-instantaneous Doppler)
images Ir (tn, fd ) � CN×Nd , r = 1, . . . Nr , where
N = �(Na � L/2)/str�, n = 1, . . . , N , L is the window
length, str is the stride size, and Nd is the number of Doppler
cells.

Fig. 1. Generation of the RID image series and the time series of a pixel.

Afterward, we stack them to form the 3-D matrix
Q(r, tn, fd ) � CNr ×N×Nd and generate the RID image
series by taking the image slices consecutively at given time
instants. Fixing the coordinates of a pixel along range and
Doppler, e.g., (ri , fd j ), (i = 1, . . . , Nr and j = 1, . . . , Nd ),
we could extract the variation of its amplitude with time
instant tn from the RID image series, and then vectorize it
by yi j = [y1, . . . ytn , . . . ytN ]T , whose entries constitute the set
{Q(r = ri , tn, fd = fd j )}. Generation of the RID image series
and the time series of a pixel is illustrated in Fig. 1. In addition,
we express the time instant vector by t = [t1, . . . tn, . . . tN ]T .
Without loss of generality, we omit the subscripts i and j of
yi j in the following discussions.

At tn , the noisy amplitude of a pixel in the image can be
approximated by the summation of signal amplitude and noise
amplitude, that is,

yn = f (tn) + �n (1)

where f (tn) is a function of tn , which is usually smooth for
space targets with limited dominant scattering centers, and �n
is the noise amplitude at tn with variance � 2

noise.
Because the amplitude and coordinates of dominant scatter-

ing centers change slowly with time in the RID image series,
it is dif�cult to describe such variation for a given pixel by
deterministic functions. To deal with this problem, we model
f (tn) by GP and transform the problem of time-varying curve
denoising to the problem of GPR.

The statistical characteristics of f (tn) are described com-
pletely by the mean function m(tn) and the covariance function
k(tn, tm), which satisfy

m(tn) = E[ f (tn)]
k(tn, tm) = E[( f (tn) � m(tn))( f (tm) � m(tm))] (2)

where tm and tn are the two arbitrary time instants in t. The
GP model of f (tn) is then described by

f (tn) � GP(m(tn), k(tn, tm)). (3)

For the convenience of computation, we set m(tn) = 0 by
preprocessing and then parameterize the covariance function
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k(tn, tm) by [27]

k(tn, tm) = � 2
f exp

�
�

(tn � tm)2

2l2

�
(4)

where � f and l are the unknown scaling parameters that
need to be estimated. The above-mentioned formula is also
known as the kernel function that re�ects the correlation
between f (tn) and f (tm). Highly correlated f (tn) and f (tm)
will generate large k(tn, tm), while weakly correlated f (tn)
and f (tm) will generate small k(tn, tm).

For complex-valued radar echoes, the real and imagi-
nary parts of the noise usually obey independent, zero-mean
Gaussian distribution. To facilitate the analysis and parameter
estimation, we perform the power transform to the power
of 0.9 to the amplitude image according to [28], which
could guarantee that �n also obeys independent Gaussian
distribution.

Given f (t) = [ f (t1), . . . f (tn), . . . f (tN )]T , the joint distri-
bution of entries in the vector y = [y1, . . . ytn , . . . ytN ]T obeys
multivariate Gaussian distribution, that is,

p(y| f (t)) = N
�
y| f (t), � 2

noiseIN
�

(5)

where IN is the N-dimensional identity matrix.
According to (3) and the de�nition of GP, one observation

of f (t) satis�es the Gaussian distribution, that is,

p( f (t)) = N (0, K) (6)

with

K =

�

����

k(t1, t1) k(t1, t2) • • • k(t1, tN )
k(t2, t1) k(t2, t2) • • • k(t2, tN )

...
...

. . .
...

k(tN , t1) k(tN , t2) • • • k(tN , tN )

	




�
. (7)

Based on Bayes� theorem, the distribution of p(y) is calcu-
lated by

p(y) =
�

p(y| f (t))p( f (t))d f (t)

= N
�
y|0, K + � 2

noise IN
�

= N (y|0, CN ) (8)

where entries of the covariance matrix CN satisfy c(tn, tm) =
k(tn, tm)+� 2

noise�nm , with �nm = 1 for m = n; or 0, otherwise.
For the successful application of GPR, we need to estimate the
unknown parameters � f , l, and � 2

noise.

III. GPR DENOISING AND MODEL
PARAMETER ESTIMATION

In this section, we will study RID image series denoising
based on the GP model. The derivation of the proposed method
and estimation of the unknown parameters will be provided in
detail in the following discussions.

A. RID Series Denoising Based on GPR
For a single pixel, assuming that the distribution of p(y)

is known, then we could obtain its denoised time series by
regression at tx � [t1, tN ] based on the noisy observation
vector y = [y1, . . . ytn , . . . ytN ]T and the corresponding time
vector t = [t1, . . . tn, . . . tN ]T .

According to the de�nition of GP, the joint distribution of
vector yN+1 = [y1, . . . ytn , . . . ytN , ytx ]T satis�es

p(yN+1) = N (yN+1|0, CN+1) (9)

where the new covariance matrix CN+1 � R(N+1)×(N+1) can
be partitioned as

CN+1 =
�

CN KT
�

K� C�

�
(10)

with

K� = [k(tx , t1) k(tx , t2) • • • k(tx , tn)] (11)
C� = k(tx , tx ) + � 2

noise (12)

where K� is the covariance matrix between the observation
at tx and those at t = [t1, . . . , tn, . . . tN ], and C� is the variance
of the new observation at tx .

Based on the probability distribution of conditional
Gaussians [27], the posterior of y(tx) is calculated by

p(y(tx)|y, tN+1) = N ( flytx , cov(ytx )) (13)

with

flytx = K�C�1
N y (14)

cov(ytx ) = C� � K�C�1
N KT

� . (15)

Accordingly, the maximum a posteriori (MAP) estimation
of y(tx) at tx is flytx . Performing (11) and (14) iteratively at tx =
[t1, . . . , tN ]T , we could generate the denoised time series of a
given pixel. Finally, we obtain the denoised inverse synthetic
aperture radar (ISAR) image series by traversing all the pixels
in the image series.

B. Parameter Estimation
In the previous discussions, we assume that the parame-

ters � f , l, and � 2
noise are known a priori. In practice, however,

we need to estimate them from the noisy image series.
Detailed steps for the estimation of � 2

noise include: 1) take
the time series of pixels far from the target region and then
2) calculate � 2

noise approximately by

� 2
noise =

1
N • M

N


tn=1




i, j

y2
i j (tn) (16)

where M = card{(i, j)} denotes the number of selected pixels,
and (i, j) denotes the 2-D coordinates of the pixel.

Because priors of � f and l are unknown, we do ML
estimation instead of MAP estimation. For the time series y
of an arbitrary pixel, the negative log-likelihood F(�) is a
function of the parameter set � = {� f , l}, that is,

F(�) = � ln p(y|�)

=
1
2

ln |CN (�)| +
1
2

yT C�1
N (�)y +

N
2

ln(2�) (17)
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where CN (�) is de�ned by (4) and (8). For � � � � , the partial
derivative of F(�) with respect to � � is calculated by

� F(�)
�� � = �

1
2

yT C�1
N

�CN

�� � C�1
N y +

1
2

Tr
�

C�1
N

�CN

�� �

�
(18)

where Tr(•) is the trace of a matrix.
Because it is hard to obtain closed-form solutions to � �

from (18), we apply the Polak�RibiŁre conjugate gradient
method [29] to achieve the ML estimation iteratively. Usually,
an accurate linear search requires a large amount of calculation
and leads to a heavy computational burden. Furthermore,
the convergence speed for most of the optimal techniques
does not rely on accurate searching. Accordingly, we adopt
the Armijo criterion [30], [31] to reduce the search step
successively, which guarantees acceptable gradient decent and
convergence of the iterative sequence. Detailed steps for the
ML estimation of � include the following.

Step 1: Let k = 0, set the stopping threshold � and the
initial value �0, then calculate g0 = (� F(�)/�� �)|�0 .

Step 2: If �gk� < �, then terminate the iteration and output
the ML estimation �M L = �k ; otherwise, calculate the search
direction dk

dk =

�
�gk, k = 0
�gk + �k�1dk�1, k 	 1

(19)

where

�k�1 =
gT

k (gk � gk�1)
gT

k�1gk�1
. (20)

If gT
k dk 	 0, then dk = �gk .

Step 3: Determine the step size 	k according to the Armijo
criterion, i.e., 	k = 	


0 , where 	0 � (0, 1) and 
 is the
minimum nonnegative integer that satis�es

F(�k + 	

0 dk) 
 F(�k) + �	


0 gT
k dk (21)

with � � (0, 0.5).
Step 4: Let �k+1 = �k + 	kdk and calculate

gk = (� F(�)/�� �)|�k+1 .
Step 5: Let k = k + 1 and then go to Step 2.

C. Algorithm Summation and Analysis
Based on the above-mentioned discussions, we estimate the

corresponding �i, j and then carry out denoising following the
method introduced in Section III-A for each time series with
different pixel locations. Finally, we obtain the denoised image
series after pixel-by-pixel processing. To sum up, the �owchart
of the proposed method is shown in Fig. 2.

The computational burden of the proposed method is mainly
determined by (14), where we need to calculate the inverse
of CN for each pixel and the related computational complexity
is O(N3). Luckily, this process could be carried out indepen-
dently by parallel computing.

In this paper, we choose the Gaussian window for the STFT
because it has the best time-frequency concentration [32]. The
optimal window length depends on the nonstationary char-
acteristics of the signal. For the highly nonstationary signal,
a shorter window is preferred; and for the stationary signal,

Fig. 2. Flowchart of the proposed method.

a longer window is selected. In addition, the stride size of the
window function determines the number of subimages and
affects the continuity of location change for the scattering
center in the RID series. Since the ML estimation needs a
lot of observations (i.e., RID images) to achieve an accurate
estimation of � f and l, the stride size cannot be too large.
Furthermore, the location of the scattering center will jump
among subimages and exhibit highly irregular change for
large stride size. In this scenario, it is dif�cult to obtain the
smooth time series due to the strong independence between
adjacent subimages, and the performance of the proposed
method degrades. On the other hand, very small stride size
will destroy the independence of noise among subimages.
Therefore, we make a compromise and set suitable stride size
according to the characteristics of radar echoes.

IV. EXPERIMENTAL RESULTS

To evaluate and compare the performance of the proposed
method with traditional image denoising techniques in various
scenarios, three metrics, i.e., PSNR, SSIM [33], and VIF [34]
will be introduced for quantitative analysis. Then, experimen-
tal results of noisy data generated by �xed-point scattering and
electromagnetic (EM) modeling will be provided to prove the
validity of the proposed method.

A. Metrics for Denoising Performance Assessment
The PSNR re�ects the Euclidean distance between the

denoised image and the original noise-free image, which is
de�ned by

PSNR = 10log10

�
Q2

max
MSE

�
(22)
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Fig. 3. Echoes of the �xed-point scattering model. (a) Distribution of scattering centers. (b) Noise-free range-compressed echoes. (c) Noisy range-compressed
echoes. (d) Range-compressed echoes after data-domain denoising by BPDN. (e) 43rd RID image of (b). (f) 43rd RID image of (c). (g) 43rd RID image of (d).

with

MSE =
1

Nr • Nd

Nr


i=1

Nd


j=1

(Ii, j � �Ii, j )2 (23)

where Qmax is the maximum image quantization scale,
e.g., Qmax = 255 for 8-bit quantization; Ii, j and �Ii, j
denote the pixel values of the original noise-free image and
the denoised image, respectively. It is observed that larger
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Fig. 4. Comparison of the 43rd denoised RID images after (a) mean �ltering, (b) Lee �ltering, (c) WT denoising, (d) BEMD denoising, and (e) GPR
denoising.

PSNR corresponds to higher similarity between the original
and the denoised images, thus indicates better denoising
performance.

The SSIM measures the similarity between I and �I , which
equals the multiplication of image luminance, contrast, and
structure, that is,

SSIM(I, �I ) = l(I, �I ) • c(I, �I ) • s(I, �I ) (24)

with

l(I, �I ) =
2µI µ �I + C1

µ2
I + µ2

�I
+ C1

(25)

c(I, �I ) =
2�I � �I + C2

� 2
I + � 2

�I
+ C2

(26)

s(I, �I ) =
�I, �I + C3

�I � �I + C3
(27)

where (µI , �I ) denotes the mean and standard deviation
of I , (µ �I , � �I ) denotes the mean and standard deviation
of �I , and �I, �I denotes the covariance of vectorized I and �I .
In this paper, we adopt the same parameter settings as those
adopted in [33, Secs. III-B and III-C], i.e., C1 = 6.5,
C2 = 58.5, and C3 = 0.5C2. According to its de�nition, larger
SSIM indicates better denoising performance and preservation
of the target structural information.

The VIF establishes the relationship between image infor-
mation and visual quality and equals the ratio of the mutual
information between the input and output of the noise-free
image vision system to the mutual information between the
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TABLE I
QUANTITATIVE COMPARISONS AMONG DIFFERENT DENOISING METHODS

input and output of the denoised image vision system, that is,

VIF =

�

j�subbands
I (

��
C N, j ;

��
F N, j |sN, j )

�

j�subbands
I (

��
C N, j ;

��
E N, j |sN, j )

(28)

where I (
��
C N, j ;

��
E N, j |sN, j ) and I (

��
C N, j ;

��
F N, j |sN, j ) denote

the mutual information of the noise-free image and the
denoised image, respectively. Particularly,

��
C N, j presents the

N elements in the random �eld C j of the noise-free image,
where j is the index of the wavelet subband,

��
F N, j and

��
E N, j

are the visual signals output by the human visual system model
for the denoised and noise-free images, respectively, and sN, j

is the random �eld generated by positive scalars. The value of
VIF falls between 0 and 1, and larger VIF indicates smaller
image degradation, thus better denoising performance.

B. Experimental Results of Fixed-Point Scattering Model
In the following experiment, radar echoes of a point target

are generated according to the �xed-point scattering model.
As shown in Fig. 3(a), the target is 10.8 m long and 6 m
wide, consisting of 30 dominant scattering centers. The carrier
frequency is 10 GHz and the bandwidth is 0.8 GHz. During
observation, the target rotates uniformly and the whole rotation
angle is 35�. The original echoes after range compression were
shown in Fig. 3(b). By adding white Gaussian noise, the SNR
becomes �5 dB and the range-compressed echoes were shown
in Fig. 3(c). In this experiment, we assume that the target can
be tracked by radar accurately utilizing narrowband signals at
relatively high SNR and only concern the problem of high-
resolution imaging and image series denoising. By sliding
the Gaussian window with a length of 61 and a stride size
of 20 along azimuth, we could obtain 49 RID images.

First, we apply the typical data-domain denoising method,
i.e., BPDN, to do noise reduction in the range-frequency
domain, and the range-compressed echoes were shown
in Fig. 3(d). It is observed that although the SNR is improved
to some extent, the range image is still covered by strong noise.
In addition, the imaging quality is not improved obviously,
as demonstrated by the 43rd RID image before and after
BPDN denoising in Fig. 3(e)�(g), respectively. Therefore, the
data-domain denoising technique like BPDN is not applicable
to very low SNR scenarios.

On the contrary, the RID image series could improve
the SNR in the image domain by coherent accumulation
along azimuth, which may facilitate successful applications
of the image-domain denoising techniques. In the following

Fig. 5. Amplitude cut of the 14th row.

Fig. 6. Time series of pixel (14, 39) taken from the original and denoised
image series.

experiments, we will focus on comparisons between the avail-
able image-domain denoising techniques and the proposed
method.

Then, we apply the mean �lter, Lee �lter, WT denois-
ing, the recently proposed bidimensional EMD (BEMD)
denoising [35], [36], and the proposed method for perfor-
mance comparison. Particularly, the BEMD denoising method
�rst calculates the 2-D intrinsic mode functions (IMFs)
of the image and then applies the wavelet transform to
the �rst and second IMFs for high-frequency components
(i.e., noise) separation. Finally, it obtains the denoised image
by adding up the denoised IMFs, the rest IMFs, and the
residual.

For a fair comparison, we select optimal parameters for the
image-domain denoising methods by experiments to guarantee
that they can achieve the best denoising performance based on
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Fig. 7. Description of the EM scattering model. (a) Target image. (b) Noise-free range-compressed echoes. (c) Noisy range-compressed echoes. (d) Fifth
RID image of (b). (e) Fifth RID image of (c).

the PSNR, SSIM, and VIF metrics. The mean �lter adopts 2×2
window; the Lee �lter adopts 7×7 window; the WT denoising
adopts the Daubechies5 (db5) wavelet basis function and set
the soft threshold by the VisuShrink method [37].

After applying different denoising methods, the 43rd
denoised RID images were shown in Fig. 4(a)�(e),
respectively. Compared with Fig. 3(e), the image details
in Fig. 4(a)�(d) are missing or blurred with smoothed edges
and noisy background. Particularly, some scattering centers
even merge into the background in Fig. 4(b)�(d). On the
contrary, the proposed method suppresses background noise
and recovers the amplitude and positions of scattering centers
accurately, achieving the best performance.

For illustration, Fig. 5 shows the amplitude cut of the
14th row. Because traditional image-domain �ltering tech-
niques apply the local information, they pull down the peak
and reduce the PSNR. For the pixel located at (14, 39),
Fig. 6 shows the corresponding time series taken from the
original and denoised image series. It is observed that the
proposed method effectively suppresses background noise, �ts
peaks of the scattering centers, and improves the PSNR. Based
on Fig. 4, Table I presents quantitative comparisons among
different methods. It is observed that the PSNR, SSIM, and
VIF of the proposed method are higher than other methods,
indicating its satisfying performance in noise reduction and
target structure preservation.








