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Time-Frequency Domain Deep Convolutional
Neural Network for the Classi�cation of Focal and

Non-Focal EEG Signals
M Srirangan, Rajesh Kumar Tripathy, and Ram Bilas Pachori

Abstract�The neurological disease such as the epilepsy is diag-
nosed using the analysis of electroencephalogram (EEG) record-
ings. The areas of the brain associated with the consequence
of epilepsy are termed as epileptogenic regions. The focal EEG
signals are generated from epileptogenic areas, and the nonfocal
signals are obtained from other regions of the brain. Thus, the
classi�cation of the focal and non-focal EEG signals are necessary
for locating the epileptogenic areas during surgery for epilepsy.
In this paper, we propose a novel method for the automated
classi�cation of focal and non-focal EEG signals. The method is
based on the use of the synchrosqueezing transform (SST) and
deep convolutional neural network (CNN) for the classi�cation.
The time-frequency matrices of EEG signal are evaluated using
both Fourier SST (FSST) and wavelet SST (WSST). The two-
dimensional (2D) deep CNN is used for the classi�cation using the
time-frequency matrix of EEG signals. The experimental results
reveal that the proposed method attains the accuracy, sensitivity,
and speci�city values of more than 99% for the classi�cation of
focal and non-focal EEG signals. The method is compared with
existing approaches for the discrimination of focal and non-focal
categories of EEG signals.

Index Terms�EEG, Focal Epilepsy, Time-Frequency Analysis,
Synchrosqueezing Tansform, Convolutional Neural Network.

I. I NTRODUCTION

H UMAN brain is intricate in nature, and it stores highly
non-linear and time-varying behavior [1]. The electrical

activity of the human brain is generally determined from
the electroencephalogram (EEG) signals, and these signals
are non-linear and non-stationary signals [2], [3]. The EEG
signals contain a lot of information which are very useful
for the detection of many disorders related to brain, like
epilepsy [4], sleep disorders [5], depression [6], Parkinsons
disease [7], depth of anaesthesia [8], coma [9], brain death
[10], tumour [11], stroke [12], and classi�cation of emotions
[13], etc. Epilepsy is a commonly occurring neurological
disorder which affects around 60 million people worldwide
[14]. Generally, in order to diagnose epilepsy, neurologists use
EEG signals. Their diagnosis is based on the visual inspection
of these EEG signals. It should be noted that this type of
manual (visual inspection based) diagnosis of epilepsy is
very time-consuming especially for long EEG data recordings.
Moreover, this method of diagnosis is subjective in nature
and requires proper skills. Due to these reasons, research in
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the diagnosis of epilepsy is focusing on the development of
new methods for the automated detection of epilepsy based
on signal processing and machine learning methods [15]�
[19]. Broadly, there are two types of epilepsy, generalized
and partial epilepsies. The partial epilepsy is also known as
focal epilepsy. The affected brain areas due to epilepsy are
called as the epileptogenic regions and the signals recorded
from these regions are called focal EEG signals. Moreover, the
signals recorded beyond the epileptogenic regions are called
as nonfocal signals. Therefore, for locating the epileptogenic
regions in the brain, the classi�cation of the focal and non-
focal EEG signals is an important task in neuroscience.

There are several methods identi�ed in existing literature
for classifying focal and non-focal classes using EEG signals
[14]. Such methods extracted various time-domain, frequency-
domain or time-frequency domain features from EEG signals
for the classi�cation. In [20], authors have used weighted
visibility graph entropy to classify focal and non focal classes.
Several methods have also been proposed, which decompose
the EEG signal into individual components or modes. In [21],
authors used statistical features in discrete wavelet transform
(DWT) domain of EEG signals for classifying focal and
non-focal classes. In [22], largest Lyapunov exponents (LLE)
and correlation dimensions (CD) features are extracted from
the subband signals of EEG for the classi�cation. Moreover,
the works reported in [23], [24] and [25] used statistical
parameters and entropy as features for categorizing focal and
non-focal EEG signals. The time-scale, and time-frequency
analysis methods such as the DWT [26], [27], �exible analytic
wavelet transform (FAWT) [28], [29], tunable Q-wavelet trans-
form (TQWT) [30], [31], wavelet packet transform (WPT)
[32], constant bandwidth TQWT [33], empirical wavelet �lter-
bank [34], and time-frequency localized orthogonal �lter-
bank [35], Fourier-Bessel series expansion [36], and Stock-
well transform [37] of EEG signal have been used for the
discrimination of focal and non-focal classes. On the other
hand, various entropy measures [38], [39], [40] and other
non-linear features have also been employed to differentiate
between focal and non-focal classes. The approaches which
are based on the neighbourhood component analysis [41],
a approach that combined variational mode decomposition
(VMD) and DWT, the empirical mode decomposition (EMD)
and DWT combination [42], the heuristic algorithm [43], the
DWT combined with hidden Markov model (HMM) [44],
and, using various supervised learning based methods [45],
[46] have been used. In [47] [48], authors have extracted
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various features from the intrinsic mode functions (IMFs)
of EEG signal for the discrimination of focal and non-focal
types. These IMFs are evaluated using EMD and complete
ensemble empirical mode decomposition with adaptive noise
based multiresolution analysis of EEG signals.

The reported approaches in literature have extracted various
raw features from EEG and also from the subband signals
of EEG for the discrimination of focal and non-focal classes.
The synchrosqueezing transform is an ef�cient time-frequency
analysis which is based on the reassignment of the coef�cients
in the time-frequency matrix [49]. The features extracted from
the Fourier synchrosqueezing transform (FSST) have shown
better performance for the detection of generalized epilepsy
using the EEG signal [50]. The wavelet synchrosqueez-
ing transform (WSST) and FSST techniques convert the
one-dimensional EEG signal into a two-dimensional time-
frequency matrix. The FSST and WSST techniques reassign
energy only in the frequency direction, and the time resolution
of the signal is preserved in the time-frequency representation
[51]. The reassignment approach in synchrosqueezing also
compensates for the spreading of energy in time-frequency
representations of short-time Fourier transform (STFT) and
wavelet transform (WT). The two-dimensional (2D) convolu-
tional neural network (CNN) has shown better performance
for the detection of various diseases from medical images
[52]. The CNN extracts learnable feature maps that capture
the signal or image speci�c information for the classi�cation
[53]. It is expected that the time-frequency matrix of EEG
signal obtained using FSST or WSST coupled with CNN can
be used for the classi�cation of focal and non-focal categories.
In this paper, the synchrosqueezing transform-based analysis
of EEG signal and 2D CNN are used for the discrimination
of focal and non-focal types for the diagnosis of partial
epilepsy. The remaining sections of this paper are organized as
follows. In Section II, the proposed method is described for
the classi�cation of focal and non-focal classes. The results
and discussion of this paper are written in Section III. The
conclusions of this paper are drawn in Section IV.

Synchrosqueezing Transform (SST)

EEG Signal, x(n)

Time-Frequency Matrix of EEG Signal

Fourier SST (FSST) or Wavelet SST (WSST)

Two Dimensional (2D) Deep
Convolutional Neural Network (CNN)

Focal Signal Non-Focal Signal

Fig. 1. Classi�cation of focal and non-focal categories of EEG signals using
synchrosqueezing transform and Deep CNN.

II. M ETHOD

The �ow-chart of the proposed method for classifying the
focal and non-focal EEG signals is depicted in Fig. 1. This
�ow-chart consists of the time-frequency analysis of EEG
signal using FSST and WSST. The 2D deep CNN is used for
the classi�cation using time-frequency matrix of EEG signal.
The following subsection discusses the different stages of the
�ow-chart.

A. Database

In this work, we have used a publicly available database
known as Bern-Barcelona EEG database in order to show
the effectiveness of our proposed method for automated clas-
si�cation of focal and non-focal classes [54]1. The Bern-
Barcelona EEG database has included EEG recording of �ve
patients who were suffering from pharmacoresistant temporal
lobe epilepsy, and these patients were the candidates for
surgery. This recording is a multi-channel EEG recording and
carrried out at the Department of Neurology, University of
Bern Switzerland. The sampling rate of each EEG signal is
512 Hz [54]. These focal and non-focal EEG signals are
arranged in the forms of bivariate signals or pairs and the EEG
signals of �rst and second channels are denoted as ’X’ and
’Y’, respectively. This database contains a total of 3750 pairs
of focal EEG recordings, and 3750 pairs of non-focal EEG
recordings. We have used the entire database in our study. The
number of samples in each EEG signal is10240. In this study,
we have considered2048samples from each EEG recordings
for the analysis.

B. Synchrosqueezing Transform

The SST is a frequency reassignment approach to improve
the time-frequency resolution in short-time Fourier transform
(STFT) and wavelet transform (WT) of a non-stationary signal
[55]. For EEG signalx(n), the discrete STFT is given as [55]

S(m; k ) =
N �1X

n=0

x(n)W (n � m)e�j 2�
N k (n�m) (1)

The S(m; k ) is denoted as the element of the time-frequency
matrix. wheren; m = 0; 1;2; :::; N � 1, andN is the number
of samples in the EEG signal.W is termed as the window
function in STFT.k = 0; 2:::; N � 1 is denoted as the number
of points in the frequency domain. For synchrosqueezing, the
discreet instantaneous frequency is obtained as [55]

ŵ[m; k ] =

8
<

:
R

h
Re

� N
2�j

S(m + 1; k )
S(m; k )

�i
if S(m; k ) 6= 0,

0 if S(m; k ) = 0.
(2)

where R[.] corresponds to the round-off operation, and Re(.)
is termed as the real part of the function,N

2�j
S(m+1;k )

S(m;k ) . The

1http://ntsa.upf.edu/downloads/andrzejak-rg-schindler-k-rummel-c-2012-nonrandomness-nonlinear-dependence-and



1558-1748 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2019.2956072, IEEE Sensors
Journal

3

1

20
48

129

FSST

10

20
48

129

Con v

Pool
20

10
24

64

Con v

Pool
30

51
2

32

Con v

Pool
40

25
6

16

Con v

Pool
50

12
8

8

Con v

Pool

12
8

FC1

64

FC2

32

FC3

16

FC4

2

FC5

FOCAL

NON
FO-
CAL

Fig. 2. Deep CNN architecture for the classi�cation of focal and non-focal classes using FSST based time-frequency matrix of EEG signal.
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Fig. 3. Deep CNN architecture for the classi�cation of focal and non-focal classes using WSST based time-frequency matrix of EEG signal.

FSST for evaluating time-frequency representation matrix of
the EEG signal is given by,

F SST(m; k̂) =
N �1X

k=0

S(m; k )� [k̂ � ŵ(m; k )] (3)

The uneven distribution of energy in STFT can be concentrated
near instantaneous frequency regions of each component of a
multicomponent signal using SST. Hence, the synchrosqueez-
ing helps to improve the time-frequency resolution of the
signal. Similarly, the synchrosqueezing applied in wavelet
transform domain is termed as the WSST. The discrete time
continious wavelet transform (DT-CWT) is given by [56],

S 
x (m; l ) =

1
l

N �1X

n=0

x(n) �
� n � m

l

�
(4)

 is the mother wavelet, andl > 0 is the scale. The �

denotes the complex conjugate of the mother wavelet. The
S 

x (m; l ) is the element of time-scale matrix or scalogram
matrix [56]. In WSST, the objective is to sharpen the time-
scale representation of EEG signal which is evaluated using
DT-CWT. The sharpening is done based on the estimation of
instantaneous frequency which is given by [49]

ŵ[m; l ] = Re
h 1

2�j
S 

x (m + 1; l )
S 

x (m; l )

i
(5)

where Re[.] is denoted as the real part of the signal. Thus, the
WSST is given by [56],

W SST
 (m; k ) =
LX

l =0 ;jS  
x (m;l ) j>


1
l
S 

x (m; l )� [k � ŵ(m; l )]

(6)
whre 
 is the threshold value. In this study, the time-frequency
matrices from EEG signals are evaluated using both FSST
and WSST approaches. For FSST, we have considered Kaiser
window with window length of 256 samples [55]. Moreover,
the morlet wavelet basis function is used for WSST based
time-frequency analysis of EEG signals [56].

C. Convolutional Neural Network

In this work, the 2D deep CNN is used for the classi�cation
of focal and non-focal classes from the time-frequency matrix
of EEG signal. The block diagrams of the deep CNN architec-
tures for the classi�cation of focal and non-focal classes using
the FSST and WSST based time-frequency matrices of EEG
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signal are shown in Fig. 2, Fig. 3, respectively. The input
time-frequency matrix for CNN has a size of129 � 2048
for FSST. Similarly, for WSST case, the size of the time-
frequency matrix is320 � 2048. where129 and 320 are the
frequency points in FSST and WSST time-frequency matrices
and2048 in both cases are termed as the samples in the time-
domain of the EEG signal. In this study, we have considered
5-convolution layers, 5-pooling layers and 5-fully connected
layers based deep CNN architectures for both FSST and
WSST cases. The size of feature maps for each convolutional
and pooling layers and the number of neurons in the fully
connected layers are shown in the block-diagrams in Fig. 2,
and Fig. 3, respectively. Letpth layer be a 2D convolution layer
andZ p

i;j be an output feature map from this convolution layer.
The feature map from thepth convolution layer is computed
as [52],

Z p
i;j = f

h m�1X

a=0

n�1X

b=0

K p
abZ p�1

( i+a)(j +b) + bp
ab

i
(7)

whereK p
ab corresponds to the 2D kernel which evaluates the

feature map,Z p
i;j from the previous layer feature map asZ p�1

i;j .
m, andn correspond to the size of the kernel (K). The factor
bl

ab denotes the corresponding bias, andf [�] is the recti�ed
linear unit (ReLU) activation function. After 2D convolution
layer, the pooling layer feature map is evaluated as [53]

Z p
i;j = max[Zp�1

(i+a)(j +b) ] wherea 2 (0; m); b 2 (0; n) (8)

where max[.] is termed as the maximum value of the elements
in the feature map for the given range. The output of the last
pooling layer is �attened to formulate a feature vector (V).
The weight matrix is multiplied in the(p� 1)th fully connected
layer to obtain the feature vector values forpth fully connected
layer. Here, the output layer consists of two neurons, and the
output is evaluated as [53],

T (s) =
ews v

P S
s=1 ews v

(9)

wherews is the weight vector connecting to thesth neuron of
the output layer, andv is the feature vector for the previous
fully connected layer. The stochastic gradient descent (SGD) is
used to train the deep CNN and the cross entropy loss function
is given by [57]

J = �
1

M

MX

m=1

SX

s=1

Ym (s) log(Tm (s)) (10)

Here, M corresponds to the minibatch size andY is the
output vector which corresponds to class labels. If the trainable
parameters of a network at an instance is denoted by� which
includes the convolutional kernels and biases, then the rule to
update them for(t + 1) th iteration can be given as [57],

� t+1 = � t +
�
M

MX

m=1

r � t [J (Ym ; Tm )] (11)

where � is the learning rate andr is termed as the gradient
operator. We have selected the training and test instances for
deep CNN using both 5-fold and hold-out cross-validation

techniques for FSST and WSST cases. The optimal training
parameters for deep CNN are minibatch size, maximum epoch,
and learning rate, respectively. The other parameters are set
as the default value in the PyTorch framework of Python
software [58]. In this work, for raw EEG signal, the 1-
dimensional (1D) deep CNN is used [59]. The measures like
sensitivity, speci�city, and accuracy are used for evaluating the
performance of deep CNN for the classi�cation of focal and
non-focal classes [15].

III. R ESULTS

In this section, the proposed method is outlined in Fig. 1) is
evaluated using the EEG signals from the database mentioned
in Section II (A). The focal and non-focal EEG signals for
channel 1 and channel 2 are depicted in Fig. 4(a) and (d), and
Fig. 4(g) and (j), respectively. It is evident that for both the
channels, the EEG signal morphologies are different for focal
and non-focal classes. The time-frequency plots evaluated
using the FSST and WSST cases for channel 1 and channel
2 focal EEG signals are shown in Fig. 4(b)-(c), and Fig.
4(h)-(i), respectively. Similarly, Fig. 4(e)-(f), and Fig. 4(k)-
(l) depicts the time-frequency plots of non-focal EEG signals
which are evaluated using FSST and WSST, respectively. It
is observed that the characteristics of EEG signals in the
time-frequency domain are different for focal and non-focal
classes. The FSST and WSST based time-frequency analysis
approach minimize the uneven distribution of energy in the
time-frequency domain, thus the time-frequency plots obtained
using these two transforms correctly capture the pathological
symptoms in EEG signal. The learnable feature maps extracted
from the time-frequency matrix of EEG signal using CNN will
provide better performance for the classi�cation of focal and
non-focal classes. In this study, we have performed the t-test
[60] for all 16 features in the fully connected (FC) layer, FC4.
It has been observed that all16 features in the FC4 layers of
CNN architectures in Fig.2 and Fig.3 have p-values less than
0.001 and these features are statistically signi�cant for the
classi�cation of focal and non-focal seizures from the EEG
signals.

The performance of deep CNN using raw EEG signal, FSST
based time-frequency matrix of EEG and WSST based time-
frequency matrix of EEG are shown in Table-I for both channel
1 (ch1) and channel 2 (ch2) cases. It is observed that the
deep 1D CNN classi�er has accuracy values of below 75%
for both hold-out and 5-fold cross-validation cases using EEG
signals of both channel 1 and channel 2, respectively. When
the FSST based time-frequency matrix of the EEG signal
is used, the 2D deep CNN shows 100% accuracy for the
classi�cation of focal and non-focal categories in both chan-
nels for 5-fold cross-validation technique. Similarly, for hold-
out cross-validation, the average accuracy, average sensitivity
and average speci�city values of deep 2D CNN are more
than 99% using FSST based time-frequency matrices of both
channels EEG signals. Moreover, the performance of 2D deep
CNN using the WSST based time-frequency matrices of EEG
signals for channel 1 and channel 2 are also shown in Table-
I. It has been observed that, for WSST based time-frequency
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Fig. 4. (a) Focal EEG signal for channel 1. (b) Time-frequency plot of channel 1 focal EEG signal evaluated using FSST. (c) Time-frequency plot of channel
1 focal EEG signal evaluated using WSST. (d) Non-focal EEG signal for channel 1. (e) Time-frequency plot of channel 1 non-focal EEG signal evaluated
using FSST. (f) Time-frequency plot of channel 1 non-focal EEG signal evaluated using WSST. (g) Focal EEG signal for channel 2. (h) Time-frequency plot
of channel 2 focal EEG signal evaluated using FSST. (i) Time-frequency plot of channel 2 focal EEG signal evaluated using WSST. (j) Non-focal EEG signal
for channel 2. (k) Time-frequency plot of channel 2 non-focal EEG signal evaluated using FSST. (l) Time-frequency plot of channel 2 non-focal EEG signal
evaluated using WSST.

TABLE I
PERFORMANCE OF DEEPCNN FOR THE CLASSIFICATION OF FOCAL AND NON-FOCAL CLASSES OFEEG SIGNALS.

Signal or time-
frequency matrix

CNN structure Cross-
validation

Accuracy (%) Sensitivity (%) Speci�city (%) F-measure Kappa score

EEG signal (Ch1) 1-D CNN Hold-out 70:09 � 2:26 63:60 � 12:03 77:12 � 10:52 0:748 � 0:014 0:431 � 0:064
5-fold 71:86 � 1:44 73:96 � 5:01 69:56 � 3:20 0:737 � 0:028 0:419 � 0:051

EEG signal (Ch2) 1-D CNN Hold-out 70:34 � 1:43 76:38 � 18:65 64:44 � 16:38 0:722 � 0:025 0:348 � 0:098
5-fold 72:60 � 3:22 81:47 � 8:72 63:34 � 1:53 0:730 � 0:019 0:415 � 0:035

FSST (Ch1) 2-D CNN Hold-out 99:80 � 0:20 99:85 � 0:15 99:75 � 0:25 1:0 � 0 1:0 � 0
5-fold 100 � 0 100 � 0 100 � 0 1:0 � 0 1:0 � 0

FSST (Ch2) 2-D CNN Hold-out 99:94 � 0:06 99:94 � 0:06 99:94 � 0:06 1:0 � 0 1:0 � 0
5-fold 100 � 0 100 � 0 100 � 0 1:0 � 0 1:0 � 0

WSST (Ch1) 2-D CNN Hold-out 73:64 � 1:18 78:32 � 6:17 69:08 � 7:98 0:745 � 0:096 0:426 � 0:030
5-fold 73:29 � 1:56 77:30 � 12:30 69:14 � 10:83 0:739 � 0:044 0:437 � 0:032

WSST (Ch2) 2-D CNN Hold-out 99:86 � 0:14 99:86 � 0:14 99:92 � 0:08 1:0 � 0 1:0 � 0
5-fold 100 � 0 100 � 0 100 � 0 1:0 � 0 1:0 � 0

matrix of channel 1 EEG signal, the average accuracy, average
sensitivity, average speci�city, average F-measure, and average
Kappa score values of deep CNN are 73.64%, 78.32%, and
69.08%, 0.745 and 0.426, respectively. For both hold-out
and 5-fold cross-validation techniques, the 2D deep CNN
has the highest average sensitivity, average accuracy, average
speci�city, average F-measure and average Kappa values using
the WSST based time-frequency matrix of channel 2 EEG
signal. The performance of the proposed approach is also
compared with the SVM [61], random forest [62], KNN
[63], ANN [64] and stacked autoencoder based deep neural
network (SA-DNN) [65] classi�ers using the learnable features
extracted at the FC4 layer. The dimension of the feature vector
in the FC4 layer is16 for a single EEG instance. In this
study, we have considered the 5-fold cross-validation method
to select the number of EEG instances [66]. The average
accuracy values for the random forest, SVM, ANN, KNN, and

SA-DNN classi�ers are 84.24%, 97.69%, 96.23%, 96.24%,
and 92.76%, respectively using the 5-fold cross-validation
method. For random forest, SVM, ANN, KNN and SA-DNN
classi�ers, the training parameters are (the number of trees as
15, the number of splits as 10, and the depth of each tree
as 12), (the regularization parameter asC = 1 and the kernel
function as radial basis function (RBF)), (the number of hidden
neurons in �rst and second layers as [10,5], the learning rate
as 0.01 and, the number of epochs as 100), (the number of
nearest neighbors as 5), and (number of hidden neurons in
�rst, second and third layers as [15,10,5]), respectively. It
is observed that the deep CNN has higher performance as
compared to the raw time-frequency features based existing
supervised learning models. This shows the robustness of the
deep CNN for extracting data-driven discriminative features
at the fully connected layer for the classi�cation of focal and
non-focal seizures. We have also compared the performance










