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Time-Frequency Domain Deep Convolutional
Neural Network for the Classi cation of Focal and
Non-Focal EEG Signals

M Srirangan, Rajesh Kumar Tripathy, and Ram Bilas Pachori

AbstractThe neurological disease such as the epilepsy is diag- the diagnosis of epilepsy is focusing on the development of
nosed using the analysis of electroencephalogram (EEG) record- new methods for the automated detection of epilepsy based
ings. The areas of the brain associated with the consequences signal processing and machine learning methods [15]

of epilepsy are termed as epileptogenic regions. The focal EEG . -
signals are generated from epileptogenic areas, and the nonfocal [19]. Broadly, there are two types of epilepsy, generalized

signals are obtained from other regions of the brain. Thus, the and partial epilepsies. The partial epilepsy is also known as
classi cation of the focal and non-focal EEG signals are necessary focal epilepsy. The affected brain areas due to epilepsy are

for locating the epileptogenic areas during surgery for epilepsy. called as the epileptogenic regions and the signals recorded
In this paper, we propose a novel method for the automated fom thege regions are called focal EEG signals. Moreover, the

classi cation of focal and non-focal EEG signals. The method is . . h .
based on the use of the synchrosqueezing transform (SST) angSignals recorded beyond the epileptogenic regions are called

deep convolutional neural network (CNN) for the classi cation. as nonfocal signals. Therefore, for locating the epileptogenic
The time-frequency matrices of EEG signal are evaluated using regions in the brain, the classi cation of the focal and non-
both Fourier SST (FSST) and wavelet SST (WSST). The two- focal EEG signals is an important task in neuroscience.
dimensional (2D) deep CNN is used for the classi cation using the  Thare are several methods identi ed in existing literature
time-frequency matrix of EEG signals. The experimental results . . .
reveal that the proposed method attains the accuracy, sensitivity, for classifying focal and non-foca] Classes usmg_ EEG signals
and speci city values of more than 99% for the classi cation of [14]. Such methods extracted various time-domain, frequency-
focal and non-focal EEG signals. The method is compared with domain or time-frequency domain features from EEG signals
existing approaches for the discrimination of focal and non-focal for the classi cation. In [20], authors have used weighted
categories of EEG signals. visibility graph entropy to classify focal and non focal classes.

Index Terms EEG, Focal Epilepsy, Time-Frequency Analysis, Several methods have also been proposed, which decompose

Synchrosqueezing Tansform, Convolutional Neural Network. the EEG signal into individual components or modes. In [21],
authors used statistical features in discrete wavelet transform
. INTRODUCTION (DWT) domain of EEG signals for classifying focal and

)pon-focal classes. In [22], largest Lyapunov exponents (LLE)
nd correlation dimensions (CD) features are extracted from
activity of the human brain is generally determined fro e subband signals of EEG for the classi cation. Moreover,

the electroencephalogram (EEG) signals, and these signt S works reported in [23], [24] and [25] “S‘?d. statistical
are non-linear and non-stationary signals [2], [3]. The EEParameters and entropy as features for categorizing focal and

signals contain a lot of information which are very useflflmn'f()(_:al EEG signals. The time-scale, and “me'freq”er?cy
for the detection of many disorders related to brain, Iik@naIySIS methods such as the DWT [26], [27], exible analytic

; ; ; : let transform (FAWT) [28], [29], tunable Q-wavelet trans-
epilepsy [4], sleep disorders [5], depression [6], Parkinso&V€
disease [7], depth of anaesthesia [8], coma [9], brain de 2m (TQWT) b[SO(]j’ [zlr]] wavelet packet_t_ranlsforml (WIPT)
[10], tumour [11], stroke [12], and classi cation of emotion ], constant anawi th TQWT [33], empirical wave et lter-
[13], etc. Epilepsy is a commonly occurring neurologic ank [34], and_tlme-frequent_:y Iocallzeq orthogonal - lter-
disorder which affects around 60 million people worldwid ank [35], Fourier-Bessel series expansion [36], and Stock-

[14]. Generally, in order to diagnose epilepsy, neurologists u .@” .tra}nsf_orm [fB?] Ofl EE(? signfal hlav<la been gsedhfor tr?e
EEG signals. Their diagnosis is based on the visual inspecti jgerimination of focal and non-focal classes. On the other

of these EEG signals. It should be noted that this type Bf’md’ various entropy measures [38], [39], [40] and other

manual (visual inspection based) diagnosis of epilepsy qgn-llnear features have also been employed to differentiate

very time-consuming especially for long EEG data recording@?twsen (fjocal arr:d no_n-;‘]%cal ﬁlasdses. The approac|he§ wZilch
Moreover, this method of diagnosis is subjective in natu e based on the neighbourhood component analysis [41],

and requires proper skills. Due to these reasons, researc iﬁ\pproach that combme.d. variational mode dgcomposVuon
VMD) and DWT, the empirical mode decomposition (EMD)
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UMAN brain is intricate in nature, and it stores highl
non-linear and time-varying behavior [1]. The electricd
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various features from the intrinsic mode functions (IMFs) Il. METHOD

of EEG signal for the discrimination of focal and non-focal Th hart of th d method for classifving th

types. These IMFs are evaluated using EMD and compk?te Ie OC\iN'C a; N | EeEgroposel med oc to;gaiglfylggThg

ensemble empirical mode decomposition with adaptive noisg & @nd non-toca signais 1s depicted in 9. 1. IS
ow-chart consists of the time-frequency analysis of EEG

signal using FSST and WSST. The 2D deep CNN is used for

raw features from EEG and also from the subband sign? € classi cation using time-frequency matrix of EEG signal.

of EEG for the discrimination of focal and non-focal classes, following subsection discusses the different stages of the

The synchrosqueezing transform is an ef cient time-frequenc?/W'Chart'

analysis which is based on the reassignment of the coef cients

in the time-frequency matrix [49]. The features extracted fro pDatabase

the Fourier synchrosqueezing transform (FSST) have shown . . _

better performance for the detection of generalized epilepsy!" this work, we have used a publicly available database
using the EEG signal [50]. The wavelet synchrosquee%nown as Bern-Barcelona EEG database in order to show
ing transform (WSST) and FSST techniques convert tﬁ'ée effectlveness of our proposed method for automated clas-
one-dimensional EEG signal into a two-dimensional timé cation of focal and non-focal classes [54] The Bem-
frequency matrix. The FSST and WSST techniques reassfgarcélona EEG database has included EEG recording of ve
energy only in the frequency direction, and the time resolutiditients who were suffering from pharmacoresistant temporal

of the signal is preserved in the time-frequency representatig?€ €pilepsy, and these patients were the candidates for

[51]. The reassignment approach in synchrosqueezing afifygery. This recording is a multi-channel EEG recording and

compensates for the spreading of energy in time-frequer@/Tried out at the Department of Neurology, University of
representations of short-time Fourier transform (STFT) argf!" Switzerland. The sampling rate of each EEG signal is
wavelet transform (WT). The two-dimensional (2D) convolu®12 Hz [54]. These focal and non-focal EEG signals are
tional neural network (CNN) has shown better performan@éra”ged in the forms of bivariate signals or pairs and tr,1e,EEG
for the detection of various diseases from medical image8gnals of rst and second channels are denoted as "X" and

[52]. The CNN extracts learnable feature maps that captu’?{é' respectively. Thi§ database containg a total of 3750 pairs
the signal or image speci ¢ information for the classi catior®! focal EEG recordings, and 3750 pairs of non-focal EEG

[53]. It is expected that the time-frequency matrix of ececordings. We have used the entire database in our study. The

signal obtained using FSST or WSST coupled with CNN cdifmber of samples in each EEG signal @40. In this study,
be used for the classi cation of focal and non-focal categorie¥® have considereg048samples from each EEG recordings

In this paper, the synchrosqueezing transform-based anal)ﬁgfsthe analysis.

of EEG signal and 2D CNN are used for the discrimination

of.focal and non—fo_cal typgs for th_e diagnosis of pgrtiaé_ Synchrosqueezing Transform

epilepsy. The remaining sections of this paper are organized as

follows. In Section II, the proposed method is described for The SST is a frequency reassignment approach to improve
the classi cation of focal and non-focal classes. The resuftde time-frequency resolution in short-time Fourier transform
and discussion of this paper are written in Section Ill. TH&STFT) and wavelet transform (WT) of a non-stationary signal

based multiresolution analysis of EEG signals.
The reported approaches in literature have extracted vari

conclusions of this paper are drawn in Section IV. [55]. For EEG signak(n), the discrete STFT is given as [55]
EEG Signal, x(n) X1 i 2-k(nm)
S(m; k) = X(MW (N m)e! « (D)
1 n=0
Synchrosqueezing Transform (SST) The S(m; k) is denoted as the element of the time-frequency
Fourier SST (FSST) or Wavelet SST (WSST) matrix. wheren;m =0; 1;2;::;;N 1, andN is the number
of samples in the EEG signalV is termed as the window

function in STFT.k =0; 2::;; N 1is denoted as the number
of points in the frequency domain. For synchrosqueezing, the
discreet instantaneous frequency is obtained as [55]

4
Time-Frequency Matrix of EEG Signal |

: A 8 h i
Two Dimensional (2D) Deep < N S(m +1;k) . ) _
Convolutional Neural Network (CNN) Wm;k] = R Re 2j  S(m;k) if S(m: k) 6= 0,
l 1 "0 if S(m;k)=0.
_ _ (2)
Focal Signal Non-Focal Signal where R[.] corresponds to the round-off operation, and Re(.)

S(m+1;k ) The

g termed as the real part of the functiogh- =535

Fig. 1. Classi cation of focal and non-focal categories of EEG signals usinI
synchrosqueezing transform and Deep CNN.

Ihttp://ntsa.upf.edu/downloads/andrzejak-rg-schindler-k-rummel-c-2012-r
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FSST Conv Conv Conv Conv Conv

Fig. 2. Deep CNN architecture for the classi cation of focal and non-focal classes using FSST based time-frequency matrix of EEG signal.

WSST Conv Conv Conv Conv Conv

Fig. 3. Deep CNN architecture for the classi cation of focal and non-focal classes using WSST based time-frequency matrix of EEG signal.

FSST for evaluating time-frequency representation matrix of

. o h i
the EEG signal is given by, W[m: 1] = Re 1 S (m+10) (5)
- 2] sc(m;l)
FSST(m; k) = S(m;k) [R wW(m; k)] (3) Where Re[] is denoted as the real part of the signal. Thus, the
k=0 WSST is given by [56],

The uneven distribution of energy in STFT can be concentrated %
near instantaneous frequency regions of each component OWSST (m; k) = }S (m:1) [k W(m:1)]
multicomponent signal using SST. Hence, the synchrosqueez- ' | ’

ing helps to improve the time-frequency resolution of the ©6)
signal. Similarly, the synchrosqueezing applied in Wavek\?\}hre is the threshold value. In this study, the time-frequency

transform domain is termed as the WSST. The discrete time , . . .
continious wavelet transform (DT-CWT) is given by [56], matrices from EEG signals are evaluated using both FSST

and WSST approaches. For FSST, we have considered Kaiser

=0 ;jSX (m;l )j>

K1 window with window length of 256 samples [55]. Moreover,
S, (m;1) = 1 xy ™M (4) the morlet wavelet basis function is used for WSST based
. | time-frequency analysis of EEG signals [56].

is the mother wavelet, antl > 0 is the scale. The
denotes the complex conjugate of the mother wavelet. The
S, (m;1) is the element of time-scale matrix or scalogram In this work, the 2D deep CNN is used for the classi cation
matrix [56]. In WSST, the objective is to sharpen the timesf focal and non-focal classes from the time-frequency matrix
scale representation of EEG signal which is evaluated usiaEEG signal. The block diagrams of the deep CNN architec-
DT-CWT. The sharpening is done based on the estimationtafes for the classi cation of focal and non-focal classes using
instantaneous frequency which is given by [49] the FSST and WSST based time-frequency matrices of EEG

Convolutional Neural Network
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signal are shown in Fig. 2, Fig. 3, respectively. The inpuaéchniques for FSST and WSST cases. The optimal training
time-frequency matrix for CNN has a size @29 2048 parameters for deep CNN are minibatch size, maximum epoch,
for FSST. Similarly, for WSST case, the size of the timeand learning rate, respectively. The other parameters are set
frequency matrix is320 2048. wherel29 and 320 are the as the default value in the PyTorch framework of Python
frequency points in FSST and WSST time-frequency matricesftware [58]. In this work, for raw EEG signal, the 1-
and2048in both cases are termed as the samples in the tintdimensional (1D) deep CNN is used [59]. The measures like
domain of the EEG signal. In this study, we have considersénsitivity, speci city, and accuracy are used for evaluating the
5-convolution layers, 5-pooling layers and 5-fully connecteglerformance of deep CNN for the classi cation of focal and
layers based deep CNN architectures for both FSST andn-focal classes [15].
WSST cases. The size of feature maps for each convolutional
and pooling layers and the number of neurons in the fully
connected layers are shown in the block-diagrams in Fig. 2,
and Fig. 3, respectively. Lgt" layer be a 2D convolution layer  In this section, the proposed method is outlined in Fig. 1) is
andZi‘?j be an output feature map from this convolution layeevaluated using the EEG signals from the database mentioned
The feature map from thp" convolution layer is computed in Section Il (A). The focal and non-focal EEG signals for
as [52], channel 1 and channel 2 are depicted in Fig. 4(a) and (d), and
h i - Fig. 4(g) and (j), respectively. It is evident that for both the
Xt Xt [ ; ; .
7P = f KP 7Pl + B @) channels, the EEG signal morphologles are different for focal
ab&(i+a)(j +b) ab and non-focal classes. The time-frequency plots evaluated
using the FSST and WSST cases for channel 1 and channel
hffocal EEG signals are shown in Fig. 4(b)-(c), and Fig.
4(h)-(i), respectively. Similarly, Fig. 4(e)-(f), and Fig. 4(k)-
() depicts the time-frequency plots of non-focal EEG signals
which are evaluated using FSST and WSST, respectively. It
is observed that the characteristics of EEG signals in the
time-frequency domain are different for focal and non-focal
Zi’-)j - max[Z(‘i’fa)(j +b)] wherea 2 (0;m);b2 (0;n) (8) classes. The FSST and WSST based time-frequency analysis
’ approach minimize the uneven distribution of energy in the
where max[.] is termed as the maximum value of the elemenii;e-frequency domain, thus the time-frequency plots obtained
in the feature map for the given range. The output of the lagding these two transforms correctly capture the pathological
pooling layer is attened to formulate a feature vector (V)symptoms in EEG signal. The learnable feature maps extracted
The weight matrix is multiplied in thép  1)™ fully connected  from the time-frequency matrix of EEG signal using CNN will
layer to obtain the feature vector values P8t fully connected provide better performance for the classi cation of focal and
layer. Here, the output layer consists of two neurons, and thén-focal classes. In this study, we have performed the t-test

I1l. RESULTS

a=0 b=0

whereK ! corresponds to the 2D kernel which evaluates t
feature mapZif’j from the previous layer feature mapb,%l

m, andn correspond to the size of the kernel XKThe factor
H, denotes the corresponding bias, dnd is the rectied
linear unit (ReLU) activation function. After 2D convolution
layer, the pooling layer feature map is evaluated as [53]

output is evaluated as [53], [60] for all 16 features in the fully connected (FC) layer, FCA4.
sV It has been observed that dl6 features in the FC4 layers of
T(s) = Ps—ews\, (9  CNN architectures in Fig.2 and Fig.3 have p-values less than
s=1

0.001 and these features are statistically signi cant for the
wherews is the weight vector connecting to tis# neuron of classi cation of focal and non-focal seizures from the EEG

the output layer, and is the feature vector for the previoussignals.

fully connected layer. The stochastic gradient descent (SGD) isThe performance of deep CNN using raw EEG signal, FSST
used to train the deep CNN and the cross entropy loss functiessed time-frequency matrix of EEG and WSST based time-

is given by [57] frequency matrix of EEG are shown in Table-I for both channel
X6 1 (chl) and channel 2 (ch2) cases. It is observed that the

J= 1 Yo (S) 10g(Tm (S)) (10) deep 1D CNN classi er has accuracy v_alues of belqw 75%

m=1 s=1 for both hold-out and 5-fold cross-validation cases using EEG

signals of both channel 1 and channel 2, respectively. When
Bpee FSST based time-frequency matrix of the EEG signal
IS used, the 2D deep CNN shows 100% accuracy for the
c{gssi cation of focal and non-focal categories in both chan-
nels for 5-fold cross-validation technique. Similarly, for hold-
out cross-validation, the average accuracy, average sensitivity

Here, M corresponds to the minibatch size aidis the
output vector which corresponds to class labels. If the trainal
parameters of a network at an instance is denoted Wwhich
includes the convolutional kernels and biases, then the rule
update them foft + 1) " iteration can be given as [57],

b and average speci city values of deep 2D CNN are more
e VIR G ALY (11) than 99% using FSST based time-frequency matrices of both
m=1 channels EEG signals. Moreover, the performance of 2D deep

where is the learning rate and is termed as the gradientCNN using the WSST based time-frequency matrices of EEG
operator. We have selected the training and test instancesdigmals for channel 1 and channel 2 are also shown in Table-
deep CNN using both 5-fold and hold-out cross-validation It has been observed that, for WSST based time-frequency
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Fig. 4. (a) Focal EEG signal for channel 1. (b) Time-frequency plot of channel 1 focal EEG signal evaluated using FSST. (c) Time-frequency plot of channel
1 focal EEG signal evaluated using WSST. (d) Non-focal EEG signal for channel 1. (e) Time-frequency plot of channel 1 non-focal EEG signal evaluated
using FSST. (f) Time-frequency plot of channel 1 non-focal EEG signal evaluated using WSST. (g) Focal EEG signal for channel 2. (h) Time-frequency plot
of channel 2 focal EEG signal evaluated using FSST. (i) Time-frequency plot of channel 2 focal EEG signal evaluated using WSST. (j) Non-focal EEG signal
for channel 2. (k) Time-frequency plot of channel 2 non-focal EEG signal evaluated using FSST. (I) Time-frequency plot of channel 2 non-focal EEG signal
evaluated using WSST.

TABLE |
PERFORMANCE OF DEEFCNN FOR THE CLASSIFICATION OF FOCAL AND NONFOCAL CLASSES OFEEG SIGNALS.

Signal or time- | CNN structure | Cross- Accuracy (%) | Sensitivity (%) | Speci city (%) F-measure Kappa score
frequency matrix validation

cec vl cre) | 1o ow | 9NN | 7009 720 o0 1205 [T 102 o7 oo [ oy o0
EEG signal (Ch2) | 1D CNN | —— 75570147872 | G334 53 | 0730 G019 | UrTs 0035
ST | zpow | eee | sew 020 | oo% ols s 0% 10 0 10 0
I o
wesT(cn) | eoow | UMt [7set Ty | 7o w7 | eons 7ov 0T ool pur oo
wesT(cra) | zoow | THeS | sego Gie | sep ode | se oo 40 g 40 ¢

matrix of channel 1 EEG signal, the average accuracy, aver&&-DNN classi ers are 84.24%, 97.69%, 96.23%, 96.24%,
sensitivity, average speci city, average F-measure, and averagel 92.76%, respectively using the 5-fold cross-validation
Kappa score values of deep CNN are 73.64%, 78.32%, ameéthod. For random forest, SVM, ANN, KNN and SA-DNN
69.08%, 0.745 and 0.426, respectively. For both hold-odlkassi ers, the training parameters are (the number of trees as
and 5-fold cross-validation techniques, the 2D deep CNMb, the number of splits as 10, and the depth of each tree
has the highest average sensitivity, average accuracy, averagd?), (the regularization parameter@s 1 and the kernel
speci city, average F-measure and average Kappa values udimgction as radial basis function (RBF)), (the number of hidden
the WSST based time-frequency matrix of channel 2 EE&urons in rst and second layers as [10,5], the learning rate
signal. The performance of the proposed approach is aB® 0.01 and, the number of epochs as 100), (the number of
compared with the SVM [61], random forest [62], KNNnearest neighbors as 5), and (number of hidden neurons in
[63], ANN [64] and stacked autoencoder based deep neunat, second and third layers as [15,10,5]), respectively. It
network (SA-DNN) [65] classi ers using the learnable features observed that the deep CNN has higher performance as
extracted at the FC4 layer. The dimension of the feature vectmmpared to the raw time-frequency features based existing
in the FC4 layer isl16 for a single EEG instance. In thissupervised learning models. This shows the robustness of the
study, we have considered the 5-fold cross-validation methddep CNN for extracting data-driven discriminative features
to select the number of EEG instances [66]. The averagethe fully connected layer for the classi cation of focal and
accuracy values for the random forest, SVM, ANN, KNN, andon-focal seizures. We have also compared the performance
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