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Fig. 23: Example of generating candidate DPR insertion solutions. The zones highlighted in blue in (a) and (b) show 2
candidate solutions of the left sub-tree. Similarly, the ones highlighted in gray show 2 candidate solutions from the right
sub-tree. Candidate solution (a), (b), (c) and (d) are generated by solution merging while the rest 4 are generated by DPR
insertion. (b) and (c) are pruned as they are inferior to (e). (h) is pruned as it is inferior to either (f) or (g).

Response: Thank you for pointing out our typos. We fixed them.

o Section 1, Internet service providers — internet service providers
e Section 1, constraints that limits — constraints that limit
e Section 3, insertions solutions — insertion solutions

Besides, we fixed some additional typos as pointed out by other reviewers.

o “Figure X” — “Fig. X” for all occurrences of “Figure X" because “Fig. X" is used in the caption

o Page 2 left column line 54 (in the original version) — “For example, suppose the smart meters of tenant 6 and tenant
7 in Fig. 6 have high anomaly rates in the last £ days. Inserting a DPR to monitor them might not be ideal if their
anomaly rates drop in the future.”

o Page 2 right column line 41 (in the original version), limits — limit

o Page 7 right column line 40 (in the original version), the list ... are — is
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Thanks you again for reviewing our paper. Your comments are very helpful and are highly appreciated.

Reviewer 2:

Comment: The paper entitled “Energy Theft Detection in Multi-Tenant Data Centers with Digital Protective Relay
Deployment” addresses energy theft detection problem for data centers. The proposed solution is based on digital
protection relays (DPR), compromised of multiprocessors with fault detection and event logging mechanisms. The DPRs
are deployed in center centers in an optimal way through the calculation of anomaly rate range, which is based on long
term effect of energy theft.

The problem addressed in this paper is an increasingly critical issue for nowadays multi-tenant data centers, considering
safety, cost, reliability and sustainability. The uncertainty in the power production and consumption, environment changes,
and management makes this problem very hard to be addressed. The paper presents the first yet promising solution to
this issue. The anomaly rate range is used to address temporary fluctuations and pruning is used to address scalability
issues. The combination of these techniques enable to address the problems in large scale systems with uncertainties of
fluctuations. The experimental results show convincing improvement by using the approach.

This paper is generally well prepared and written: the problems are well clarified and formulated; the proposed solution
is technically sound; the experiments also show the good benefit of the approach.

Response: Thank you for your time and effort reviewing our paper. Your comments are highly appreciated and we
have answered your questions as follows and made changes accordingly.

Comment: What is the impact of geographical location and environmental changes on the proposed approach, e.g.
unexpected temperature changes?

Response: Thank you for your comment. We interpret this question as whether the performance of our energy theft
detection solution is consistent across all data centers, regardless of their geographical location.

We believe that our solution would work in all data centers. The reason is that we rely on the DPRs installed inside
the data centers to monitor the energy usage of the tenants. Since the data centers are equipped with environmental
control mechanisms, the physical condition, such as temperature and humidity, remains the same. The DPRs are installed
in the distribution network inside the data centers, which means that they are under the protection of environmental
control mechanisms of the data center. For this reason, we believe that the DPRs remain functional regardless of the
unexpected environmental changes outside the data center. Therefore, we do not think that the geographical location and
environmental changes would have noticeable impacts on our solution.

Comment: Is there any assumption on the energy theft, e.g., based on linear relations or some patterns?

Response: This is a very good question. In this paper, we consider the general energy theft pattern, in which the energy
thefts are randomly generated in our simulation. In other words, each tenant is given an overall anomaly rate, which
defines the probability that it commits energy theft on each time slot. Subsequently, a random number between 0 and 1
is generated at each time slot. If it is smaller than the overall anomaly rate, then energy theft is generated over that time
slot such that the energy consumption of the tenant reported to the utility company is reduced by the factor of d;, which is
uniformly distributed in the range [0,1].

Thank you again for this great comment, which inspires us to explore other energy theft patterns and we will complete
this as one of the future works. It is interesting to note that a malicious tenant could launch a collusive energy theft such
that it reduces the reading of its own smart meter while raising the reading of its neighbors, causing the accumulative
readings of the two smart meters to remain the same during an energy theft. We added the following sentence in Section 5:

“As the future work, the impact of different energy theft patterns on our DPR insertion algorithm will be further
studied. Anomaly detection algorithms will be proposed to handle various specific energy theft patterns, such as collusive
energy theft, in which the malicious tenant attacks both its own smart meter and the neighboring ones.”

Comment: What is the best time granularity to detect energy theft, day, hours, and minutes? Is there any accuracy
problem related to this?

Response: This is an insightful question. Our energy theft detection solution is to compare the reading of the DPR and
the summation of the readings of the downstream smart meters to determine whether energy theft exists. If the two values
match, then there is no energy theft. Therefore, in theory, the time granularity has no impact on the detection accuracy. Yet
in practice, if a fine-grained time unit is used (such as a minute), the difference between the reading of the DPR and the
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summation of the readings of the downstream smart meters might be negligible even if energy theft does exist. Therefore,
it is reasonable to use the finest time unit as long as the difference between the two reading values is easily observable
under energy theft. This ensures that the energy thefts are caught in a timely manner.

Comment: What is the robustness of the anomaly rate range calculation algorithm?

Response: Thanks a lot for this question. We interpret the question as whether the calculated anomaly rate ranges
would reflect the anomaly rate range of the tenant in the future. We did the following simulation to show that the anomaly
rate range calculated from historical records generally matches the true anomaly rate of the tenant, under the case that the
anomaly rate of the tenant fluctuates slightly in the future.

In this simulation, each tenant is assigned with a new energy theft profile, which indicates whether energy theft is
committed on each of the 720 time slot (hour). The underlying anomaly rate for generating the profile is not a constant.
Instead, for every 24 time slots, it is set to random number uniformly drawn from the range [r — 10%, r + 10%)], in which
r is the underlying anomaly rate used to generate the historical energy theft profile. Subsequently, a moving window with
the width of 72 time slots goes across the energy theft profile. As the window moves from the first time slot through the
last one, the anomaly rate within the window is calculated and recorded. The match rate of the anomaly rate range is
the percentage of the number of anomaly rates that fall in the anomaly rate range. Our simulation shows that the average
match rate is 85.9%, 87.5%, 87.9%, 88.4%, and 88.2%, for the MTDCs with 20, 100, 200, 1000 and 2000 tenants, respectively.

This result indicates that even if the underlying anomaly rate of the tenants fluctuates slightly in the future, there is
large chance that it is still captured by the anomaly rate range calculated from the historical records. As a result, the DPR
insertion solution generated based on the anomaly rate ranges remains of high quality in the long term.

Comment: Minor problems:
Response: Thank you for pointing our these minor issues. They are properly addressed.

Comment: Page 1 left column line 41, “Figure 1” is used here, but in the figure title, "Fig. 1”
Response: Thank you for pointing this inconsistency. All “Figure X” in the paper are replaced with “Fig. X”.

Comment: Page 2 left column line 54, in Fig. 7, can’t find tenant 6 and 7

Response: Thank you for pointing this out. It was a typo and we were referring to Fig. 6. It has been fixed on page 2 as
“For example, suppose smart meter of tenant 6 and 7 in Fig. 6 have high anomaly rates in the last k& days. Inserting a DPR
to monitor them might not be ideal if their anomaly rates drop in the future.”

Comment: Page 2 left column line 54, have — has

Response: Thanks for pointing this out. We fixed this issue: “For example, suppose the smart meters of tenant 6 and
tenant 7 in Fig. 6 have high anomaly rates in the last k days. Inserting a DPR to monitor them might not be ideal if their
anomaly rates drop in the future.”

Comment: Page 2 right column line 41, limits — limit

Response: Thanks for pointing this out. We fixed this issue: “Given the constraints that limit the number of smart
meters to check in the worst case, our algorithm inserts the minimum number of DPRs into the power distribution network
of the data center.”

M . M is not defined, similar to p
Response: Thanks for helping us to improve the clarity of these notations. We dropped the M notation from those two
variables:
“Each DPR can only cover at most ¢4 tenants.”
“For each DPR inserted, the mean of the aggregated anomaly rate range of all tenant covered by it cannot exceed

7
pmaw .

Comment: Page 3 right column line 14, in C}/

Comment: Page 7 right column line 40, the list ... are — is

Response: Thanks for pointing out this typo. We fixed it:

“At the solution pruning step, as long as the list of candidate solutions is sorted according to the ¢!, we could prune
all inferior solutions by scanning the list once while discarding those with more uncovered smart meters and mean
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aggregated anomaly ranges.”

Thank you again for all your comments. We do appreciate your time and effort in reviewing our paper.

Reviewer 3:

Comment: The paper tackles an interesting and relevant challenge in current and future data centres. Overall the paper
is written well. However, I suggest parts of the paper be described in more detail to improve clarity. Please see detailed
comments below:

Response: Thank you for your time and effort reviewing this paper. Your comments are properly addressed as follows.

Comment: Could you please clearly illustrate how the energy theft in Figure 1 was simulated and rest of the paper.

Response: Thank you for your comment on this. It is absolutely necessary to link Fig. 1 with energy theft and explain
clearly how energy theft is simulated in this paper.

In Fig. 1, each tenant is equipped with a smart meter, which continuously collects the energy consumption of the
machines owned by the tenant and periodically reports the reading to the utility company wirelessly. Subsequently, the
tenant is billed by the data center according to the energy usage reported by its smart meter.
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Fig. 1: Simplified architecture of the power distribution network of a typical multi-tenant data center (MTDC). Under
different circumstances, the data center utilizes power supplies from different sources such as the traditional power grid,
the in-house electric generator and Uninterrupted Power Supply (UPS). At the cluster level, each Power Distribution Unit
(PDU) delivers electricity to a set of tenants and each tenant is equipped with a smart meter, which reports the energy
usage to the utility company periodically for billing purposes. (repeated from page 1)

In this paper, energy thefts are randomly generated in our simulation. In other words, each tenant is given an overall
anomaly rate, which defines the probability that it commits energy theft on each time slot. Subsequently, a random number
between 0 and 1 is generated at each time slot. If it is smaller than the overall anomaly rate, then energy theft is generated
over that time slot such that the energy consumption of the tenant reported to the utility company is reduced by the factor
of 4;, which is uniformly distributed in the range [0,1].

In Section 1, we added the following paragraph to illustrate how energy theft is simulated.

“Being compromised by the malicious tenant, the smart meter reports an erroneous energy usage reading, lower than
the actual one, to the utility company. Fig. 2 shows an example of energy theft, in which the readings reported to the utility
company by the compromised smart meter are lower than the actual values over the highlighted time slots. In this paper,
the energy theft behaviors of the tenants are randomly generated. Each tenant is assigned an overall anomaly rate, which
is compared with a random number generated at each time slot to determine whether it commits energy theft at that time
slot.”

In Section 4, we moved the part describing how energy theft is generated in our simulation from Section 4.2 to Section
4.1 to make it easily accessible.

Comment: My suggestion is to have parts of the 2.1 in the introduction section so it is clear what MTDC is
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Response: Thank you for this great comment. We totally agree with you that we should explain what an MTDC is at
the beginning of Introduction. Therefore, we moved the following paragraph from Section 2 to Section 1.

“In contrast to the owner-operated counterparts, a Multi-Tenant Data Center (MTDC) is a type of data center where
physical space, power supply and maintenance services are available for rental to customers [2]. In practice, the tenants
host their physical servers in the MTDC building while the MTDC operator provides infrastructure services including
power supply, cooling, and networking [3].”

Comment: I believe, The assumption for anomaly detection i.e. energy usage pattern over two days/similar time slots
would be within a range is not entirely true. Since depending on the incoming load which can change by time and day
(e.g. flash sale), the CPUs could be overworking and hence requiring more power than other days.

Response: Thank you for pointing this out. We totally agree with you that the CPU is overworking during certain
periods such as flash sales, causing the server fleet to consume more energy than usual. That has been considered in this
paper. In fact, these unusual but normal time slots in historical records would be erroneously detected as anomalies by the
MCD-based algorithm. That is exactly why the accuracy of MCD-based anomaly detection is not 100%, as shown in Fig.
10. This motivates us to propose our main algorithm, the DPR insertion algorithm, that improves the detection accuracy
to 100%. The calculation of anomaly rate range is merely an estimation of the energy theft frequency of each tenant. Its
purpose is to guide the DPR insertion algorithm to insert more DPRs to regions where the tenants have high anomaly
rates. We added the following analysis to Section 4.2 to reflect this.

Accuracy of MCD-based Anomaly Detection
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Fig. 10: The accuracy of MCD-based anomaly identification from historical records of energy usage of the tenants. The
detection accuracy on energy theft is the ratio between the number of correctly detected anomalies and the total number
of real anomalies. The accuracy for normal cases is the ratio between the number of time slots correctly identified as with
no energy theft and the total number of “good” time slots. (repeated from page 10)

“The average detection accuracy for the standalone MCD-based algorithm is 86% on average. It is understandable that
the energy usage of the machines is not always similar to the ones over the same periods on neighboring days. During
periods of flash sales, the energy usage would be higher. If the tenant manipulates the reported energy usage such that it
is similar to neighboring days, MCD-based algorithm would not work. For this reason, it is not reasonable to solely rely on
the MCD-based anomaly identification for energy theft detection as 14% of energy theft cases cannot be detected. Yet the
MCD-based algorithm is still useful as it provides an estimation of the anomaly rate range for each tenant, such that the
dynamic programming DPR insertion algorithm could allocate more DPR resources to the part of the distribution network
where tenants have higher anomaly rates.”

Comment: Detecting anomaly for time series data based on usage patter is not novel. It looks you are applying well
known techniques. The novelty here is very low.

Response: We appreciate your observation. It is true that we are applying the well-known MCD-algorithm. However,
that is not the focus of this work. The main contribution of this work is the DPR insertion algorithm based on dynamic
programming discussed in Section 3.2. The MCD-based anomaly detection is a preparation step for our DPR insertion
algorithm. It estimates the anomaly rate range for each tenant based on the historical records so that the DPR insertion
algorithm knows which region of the distribution network deserves more DPR resources.

Comment: I see, Section 3.2 is the key contribution of this work. I suggest to provide more illustrative details here and
if required reduce section 3.1.1. For example, the generation of candidate solution at each node (mentioned in page 6, last
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para of section 3.2) can be described in a more detailed and simplified manner Similarly, section 3.2.1 and 3.2.2 could be
described in a more detailed and simplified manner

Response: Your keen insight is highly appreciated. Precisely, Section 3.2 is indeed the key contribution of this work. We
significantly improved Section 3.2 as follows by replacing Fig. 7 with an illustrative example.
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Fig. 7: A simple example of the proposed dynamic programming algorithm. The original distribution network is shown in
(a), in which there exists four possible locations for DPR insertion, 1’, 2/, 3/, and 4’. The upper bound of anomaly rate at
any internal node is set to p,,q. = 0.50. Each graph shows a candidate solution generated for a specific sub-tree. The root
of the sub-tree and the tuple characterizing the candidate solution is shown at the bottom of each tree. (repeated from page
8)

“After the MCD-based anomaly identification algorithm estimates the anomaly rate range of each tenant, our dynamic
programming algorithm leverages that information for optimizing the allocation of DPR resources into the distribution
network of the MTDC. In other words, regions where tenants have higher anomaly rates are allocated with more DPRs.
Specifically, our dynamic programming DPR insertion algorithm processes the binary tree in the bottom-up fashion using
post-order traversal. As an example in Fig. 7 (a), each tenant (leaf) is assigned with an anomaly rate range. The target is to
determine whether a DPR should be inserted at each of the four internal nodes, 1’, 2, 3" and 4’. It is assumed that a DPR is
pre-installed at the root to monitor the entire MTDC. In this example, our algorithm processes the four nodes sequentially
in the order of 2’,4’, 1" and 3’.

Our algorithm leverages the concept of a candidate solution, which denotes the DPR insertion solution for a sub-tree
rooted at an internal node. For any candidate solutions, whether a DPR is inserted at each internal node in that sub-tree is
finalized. For example, Fig. 7 (h) shows a candidate solution for the sub-tree rooted at node 1’. It inserts a DPR at node 2’
and does not insert one at 1”. Each candidate solution is characterized by the tuple (¢!, cM, [p!, p#]), in which ¢! and ¢
are the number of DPRs inserted and the number of uncovered tenant viewing downstream from node 7;. An uncovered
tenant denotes a tenant for which there exists no DPR on the path from the root of the sub-tree to it. For example, for the
sub-tree rooted at node 1’ in Fig. 7 (h), 1" is an uncovered tenant while 2’ is not.

At each internal node, a set of candidate solutions are obtained from the left sub-tree while the other set is obtained
from the right sub-tree. Each candidate solution from the left sub-tree is merged with each one from the right sub-tree,
yielding a new candidate solution for the current sub-tree. That is, if there are m candidate solutions from the left sub-tree
and n from the right, m - n new candidate solutions are formed. Since we have the option to insert a DRP at the current
node, another m - n candidate solutions are generated from the previously generated ones by inserting a DPR at the current
node. As an example, merging the candidate solution at node 2’ with the one at leaf 1 yields a candidate solution at node
1, shown in Fig. 7 (f). Subsequently, inserting a DPR at 1" produces another candidate solution at node 1’, shown in Fig.
7 (g). When all the candidate solutions for the current sub-tree are generated, solution pruning is performed such that
a sub-set of them are selected and propagated to the parent of the current node. For example, there are two candidate
solutions for the sub-tree at node 1” in Fig. 7 (f) and (g). Only the one in Fig. 7 (g) is propagated to the root to be merged
with the candidate solutions for the sub-tree rooted at node 3’. The one in Fig. 7 (f) is pruned as it violates the anomaly
rate constraint. Solution pruning is critical as it prevents the number of candidate solutions to grow exponentially.

Details of solution merging, DPR insertion and solution pruning are discussed in Section 3.2.1, Section 3.2.2, and
Section 3.2.3, respectively.”
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Section 3.2.1 is significantly improved as well:

“Since the DPR insertion solutions of the left sub-trees are independent from the ones of the right sub-tree, solutions
from the two sets can be merged directly to form one solution for the current sub-tree. In other words, each candidate
solution from the left sub-tree is paired and merged with another solution from the right sub-tree. Subsequently, the
quality of the new solution is computed, as the preparation of the solution pruning step.

Suppose that the left and right candidate solutions are s; and s,, the solution quality of s; is updated according to
Equation 16. The number of DPRs inserted and the number of uncovered smart meters are the summation of that of s; and
s, respectively. The lower and upper bound of the aggregated anomaly rates are the probabilistic combination of that of

s; and s,..
I I I
c; =¢ +c,
M M M
¢’ =¢ +c, (16)

LY = [p)+pl —pl - Pl pi + pt — pit - pY]

Solutions with ¢ > ¢M
covered by each DPR.

An example of solution merging is illustrated in Fig. 7 (f), which illustrates the formation of the candidate solution for
the sub-tree rooted at the node 1'. Specifically, the candidate solution from the left sub-tree rooted at node 2’ (shown in Fig.
7 (b)) is merged with the one rooted at node 1. The former is characterized by the tuple (0, 1,[0.2,0.3]), which means that
it inserts 0 DPR and has 1 uncovered smart meter (node 2) while the anomaly rate range is [0.2,0.3]. Similarly, the latter
is characterized by the tuple (0, 1,[0.3,0.4]). By applying Equation 16, the resulting candidate solution for the sub-tree

rooted at node 1’ is characterized by (0 + 0,1 +1,[0.24 0.3 — 0.2-0.3,0.3 + 0.4 — 0.3 - 0.4]) = (0, 2, [0.44,0.58]).”

are discarded as they violate the constraint that limits the maximum number of smart meters

Section 3.2.2 is significantly improved as follows:

“The set of candidate solutions generated by solution merging does not form the complete set of candidates that could
become part of the final solution of the entire tree. The reason lies in the option to insert an DPR at the current node. For
each candidate solution generated by solution merging, a new candidate solution is derived by simply inserting an DPR at
the current node. After the insertion, the number of uncovered smart meters and both the lower and upper bounds of the
anomaly rate are set to 0.

As an example, Fig. 7 (h) indicates a candidate solution generated by merging the candidate solution for the sub-tree
rooted at node 2" (shown in Fig. 7 (c)) with the one for the sub-tree rooted 1. Inserting a DPR at the root of the sub-tree
yields the candidate solutions shown in Fig. 7 (i). After DPR insertion, the number of uncovered tenant is set to 0 to
indicate that all tenants are monitored, viewing from the upstream of node 1’. Similarly, the anomaly rate range is set to
[0, 0] to notice the ancestor node (the root) that no more DPRs should be allocated to monitor this sub-tree.”

Section 3.2.3 is significantly improved:

“The number of candidate solutions grow exponentially without the solution pruning step. The reason is that at any
internal node we can either inserts an DPR or not. Therefore, if no solution pruning is performed, the number of candidate
solutions is 2% at node n;, where k; is the number of internal nodes in the sub-tree rooted at node n;.

Solution pruning ensures that invalid and inferior solutions are never passed over to the upstream. For any two
candidate solutions at any internal node, one is inferior to the other if and only if it has more DPRs inserted, more
uncovered tenants and higher mean aggregated anomaly rate. In other words, suppose two candidate solutions s; and s,
characterized by tuple (c/, ¢}/, [p}, pi']) and (cf, ¢}, [p}, p¥]), respectively. Denote s; > s; if Equation 17 holds. Therefore,
candidate solution s; is discarded if there exists another candidate solution s; and s; > s;. The rationale behind solution
pruning is that s; can never be part of the optimal solution because we could replace it with s; to obtain a better one.

cf > c§
it > e (17)
(s +p}) /2> (0} +p})/2

Examples of solution pruning can be found in Fig. 7. For instance, there exist four candidate solutions for the sub-tree
rooted at node 1’, as indicated by Fig. 7 (f), (g), (h) and (i). The one in (f) is discarded as its average anomaly rate is
(0.44 + 0.58)/2 = 0.51. It violates the constraint that the average anomaly rate at any internal node cannot exceed
DPmaz- In this example, pp,q is set to 0.50. Compared with the candidate solution in (g), the one in (h) is pruned because
(1,1,[0.3,0.4]) > (1,0, [0, 0]). Similarly, (i) is pruned by (g) as well.”
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Comment: The description of Figure 7 is very confusing and hard to understand especially with the use of blue and
gray area. Also an illustrative example that can provide the process of DPR insertion would be very useful. Bit more
illustrative than Figure 3.

Response: Thank you for this comment on Fig. 7. We completely redrew Fig. 7 with an illustrative example to clearly
explain our dynamic programming algorithm. We added the new Section 3.2.5 to clearly explain the illustrative example
in Fig. 7.

“An illustrative example of the proposed dynamic programming based DPR insertion algorithm is demonstrated in
Fig. 7. The original distribution network is shown in (a), in which there exists four possible locations for DPR insertion, 1,
2’,3, and 4. The upper bound of anomaly rate at any internal node is set to p,,4, = 0.50. As shown at the root, a DPR is
pre-installed at the entrance of the distribution network of the MTDC. Each tree Fig. 7 indicates a candidate solution of a
sub-tree. The root of the sub-tree and the characterization tuple is indicate at the bottom.

The algorithm starts from the lowest level of the tree. For sub-tree rooted at node 2’, a candidate solution with no
DPR inserted is generated as in (b). Inserting a DPR at 2’ yields another candidate solution (c). Moving from node 2’
in (b) towards the upstream, the algorithm generates a candidate solution (f) for the sub-tree rooted at 1° by merging
the candidate solution from the left sub-tree (shown in (b)) and the leaf node 1. Subsequently, (g) is generated from
(f) by inserting a DPR at 1’. The other two candidate solutions for the sub-tree rooted at node 1’ are shown in (h) and
(). They are generated from (c). Since the average anomaly rate for (f) is (0.44 + 0.58)/2 = 0.51, it goes above the
threshold of 0.50. Therefore it is an invalid and is discarded. (h) and (i) are pruned by (g) because according to Equation
17, (1,1,[0.3,0.4]) > (1,0,[0,0]) and (2,0,[0,0]) > (1,0,[0,0]). Other partial solutions are generated and pruned in the
similar fashion. Finally, at the root, the final solution (n) is generated by merging the partial solution for the sub-tree rooted
at 1’ (g) and the one at 3’ (j). Similarly, the other solution (o) is generated by merging (g) and (k). Since (o) uses more DPRs
while having the same number of uncovered tenants and anomaly rate range compared with (n), it is pruned. Therefore,
(n) is our final solution.”

Comment: It is still not very clear, how the DPR insertion is performed i.e. does the algorithm traverse the tree
computing the anomaly ranges and then deciding where to deploy the DPRs?

Response: Thank you for this comment. We have drastically improved the readability of Section 3.2 with the help of
the newly added illustrative example in Fig. 7.

In summary, our algorithm is divided into two parts. The first one uses MCD algorithm to identify anomalies from
the energy usage graph of each tenant. The purpose of this part is to calculate the anomaly rate range of each tenant.
The second part is the DPR insertion algorithm based on dynamic programming. In the latter part, the tree is traversed
by post-order traversal to determine whether a DPR should be inserted at each internal node. At each node, a set of
candidate solutions are generated and the characterization of each candidate solution, including the anomaly rate range,
is calculated.

Comment: From experimental outcome (Figure 11), detection accuracy is 80%. What was the detection accuracy of the
baseline approach?

Response: Thank you for pointing this out. We realized that that Fig. 10 (shown as Fig. 11 in the previous draft) is
confusing. We were trying to demonstrate the simulation result of the MCD-based detection algorithm, which is not the
main focus of this paper. Therefore, in this context, the MCD-based algorithm is the baseline algorithm. The MCD-based
algorithm is not supposed to be used as an energy theft detection algorithm because it cannot capture all energy theft
behaviors. In contrast, the proposed solution merely uses MCD to estimate the anomaly rate range of each tenant. That
information is subsequently consumed by our DPR insertion dynamic programming algorithm. After the deployment of
the DPR insertion solution, each tenant is monitored by a DPR, which continuously compares its own readings with the
accumulative readings of its downstream smart meters. Whenever a tenant commits energy theft, the DPR is able to detect
it because the accumulative readings of the downstream smart meters is lower than its own reading.

We clarified both Fig. 9 and Fig. 10 by comparing the detection accuracy of the standalone MCD-based algorithm and
the proposed solution. In addition, we improved the clarity of Section 4.2.

“The average detection accuracy for the standalone MCD-based algorithm is 86% on average. It is understandable that
the energy usage of the machines is not always similar to the ones over the same periods on neighboring days. During
periods of flash sales, the energy usage would be higher. If the tenant manipulates the reported energy usage such that it
is similar to neighboring days, MCD-based algorithm would not work. For this reason, it is not reasonable to solely rely on
the MCD-based anomaly identification for energy theft detection as 14% of energy theft cases cannot be detected. Yet the
MCD-based algorithm is still useful as it provides an estimation of the anomaly rate range for each tenant, such that the
dynamic programming DPR insertion algorithm could allocate more DPR resources to the part of the distribution network
where tenants have higher anomaly rates.

The proposed detection solution relies on the DPR insertion algorithm, which uses the MCD algorithm for estimating
the anomaly rate range of each tenant. The detection accuracy is 100% because each tenant is monitored by a DPR, which
compares the summation of the energy usage reported by the downstream smart meters with its own reading. Whenever a
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ENERGY THEFT DETECTION ACCURACY
(1000-TENANT MTDC)

——Detection Accuracy of MCD-based Algorithm ~ ——Detection Accuracy of MCD + DPR Insertion Algorithm
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Fig. 9: The detection accuracy denotes the percentage of tenants that are correctly recognized as malicious tenants
committing energy theft at each time slot. This figure plots the average detection accuracy of the standalone MCD-based
algorithm and the proposed DPR insertion solution, which uses MCD for estimating the anomaly rate range of each tenant.
(repeated from page 10)

Energy Theft Detection Accuracy
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Fig. 10: The energy theft detection accuracy of the MCD-based algorithm cannot reach 100%. Therefore, it is not a reliable
algorithm for energy theft detection in production. Our proposed detection solution uses the MCD-based algorithm for
estimating the anomaly rate range of each tenant. After introducing DPRs to monitor the energy usage of each tenant, the
detection accuracy reaches 100%. The reason is that each tenant is monitored by a DPR, which continuously compares its
own reading with the summation of the readings of the downstream smart meters. If the two values do not match, energy
theft is detected. (repeated from page 10)

tenant commits energy theft, there would be a discrepancy between the two values, enabling the utility company to detect
the energy theft. ”

Comment: Your description of the evaluation is also not very clear. E.g. Fig 12-16 please clearly define what you mean
by the metric average number of smart meter to check

Response: Thank you for this comment. We have significantly improved Section 4.3 to clearly illustrate the metrics:

“The two metrics for evaluating DPR insertion solutions are

e the average number of smart meters to check for identifying all malicious tenants in the data center
¢ the average number of smart meters to check for identifying one malicious tenant

For example, suppose tenant 18, 19 and 20 in Fig. 11 commit energy theft on a specific time slot. For the DPR insertion
solution on the left, since tenant 18 is in the downstream of DPR d5, we have to examine tenant 14, 15, 16, 17, 18 in order
to find it. Similarly, tenant 19 and 20 have to be checked as both are monitored by DPR dg. Therefore, the number of
smart meters to check for identifying all malicious tenants is 5 + 2 = 7. The average number of smart meters to check for
identifying one malicious tenant is (5 + 2)/3 = 2.3. For the DPR insertion solution on the right, tenant 18, 19 and 20 have
to be examined. Therefore, the two metrics are 1 +2 =3 and (1 +2)/3 = 1.

2377-3782 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2017.2705192, IEEE
Transactions on Sustainable Computing

12

For each time slot, the two metrics are recorded for both DPR insertion solutions. Subsequently, they are averaged over
each day. The average number of tenants to check for identifying all energy thefts are shown in Fig. 12, Fig. 13, Fig. 14,
Fig. 15 and Fig. 16, for each MTDC respectively. Similarly, the average number of tenants to check for identifying a single
energy theft is plotted in Fig. 17, Fig. 18, Fig. 19, Fig. 20 and Fig. 21, for each MTDC respectively.”

Comment: Minor Typos

Page 8 line 37 This should be Figure 9

Response: Thank you for pointing out this typo. Yes, it indeed should be Fig. 8:

“As an example, Fig. 8 shows the generated historical energy consumption of tenant 1 in the 30-day period.”

Comment: Section 4.3 line 55, 56, 57 Some writing error. PDU repeated too many times.

Response: Thanks a lot for letting us know about this. We fixed it:

“Instead of processing the power distribution network in the bottom-up fashion, it handles each PDU individually.
For each PDU, it first inserts an PDU at the first tenant. Subsequently, it traverses down the power line and inserts a DPR
when ¢,, ., tenants are visited.”

Comment: Please check your figure placements. You refer to figure e.g. Fig 8 much later in text while it appears much
earlier
Response: Thank you for pointing this out. We moved Fig. 8 to Fig. 11 on page 10.

Thanks again for reviewing our paper. Your comments are very helpful for us to improve this paper.
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