












2327-4662 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2017.2707094, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL 7

(a) (b) (c)

(d) (e) (f)

Fig. 5. The behavior of the proposed algorithm for two-level QoS management. (a) the distribution of the p training patterns in T , the set O1(p), and the
optimal allocation xO1(p). (b) the sets O1(p+ 1), and the optimal allocations xO1(p+1) for the positive responses yp+1 = 7 and 12. (c) the sets O1(p+ 1),
and the optimal allocations xO1(p+1) for the negative responses yp+1 = 1 and 6. (d) the distribution of the p training patterns in T , the set O2(p), and the
optimal allocation xO2(p). (e) the sets O2(p+ 1), and the optimal allocations xO2(p+1) for the positive responses yp+1 = 8 and 12. (f) the sets O2(p+ 1),
and the optimal allocations xO2(p+1) for the negative responses yp+1 = 1 and 7.

This then implies that

|xOq(p)| ≤ |xOq(p+1)|, when k < aq. (41)

That is, a negative response will result in an increase in total
bandwidth for the next service.

The proposed algorithm has an additional advantage that the
increase in total bandwidth for negative responses is dependent
on the service response level k. A lower k will lead to larger
increase in total bandwidth for maintaining the prescribed QoS
level. This fact can be observed by considering again two
integers, k1 and k2, where 1 ≤ k2 < k1 ≤ aq . It can then
be derived from (39) that

Oq(p+ 1, k1) ⊇ Oq(p+ 1, k2), when k2 < k1 ≤ aq. (42)

The bandwidth allocations based on the sets Oq(p+1, k1) and
Oq(p+ 1, k2) are then given by

|xOq(p+1,k1)| ≤ |xOq(p+1,k2)|, when k2 < k1 ≤ aq. (43)

V. EXPERIMENTAL RESULTS

A. QoS-aware experiments

We first consider a numerical example illustrating the be-
havior of the proposed the QoS-aware bandwidth allocation,
as revealed in Fig. 5. In the experimental set up, the number of
communication links between two bridges is two (i.e., n = 2).
The maximum bandwidths for links 1 and 2 are B1 = 50
Mb/s, and B2 = 70 Mb/s, respectively. The step size ∆ for
the search space B in (5) is ∆ = 0.25 Mb/s. The number of
training patterns of the initial profile T is 14 (i.e., p = 14).
The numerical results are obtained by Matlab.

In the example, the number of service levels is 12 (i.e.,
L = 12). For the sake of simplicity, the number of QoS levels
is 2 (i.e., Q = 2). We let a1 = 7 and a2 = 8. Therefore, all the
service responses with response level k less than 7 and 8 are
considered as the negative responses for QoS level 1 and level
2, respectively. The optimal bandwidth allocations xO1(p) and
xO2(p) for QoS level 1 and level 2 are then obtained by the full
search over the set O1(p) = ∪12k=7Sk and O2(p) = ∪12k=8Sk,
respectively.

The experimental results of QoS level 1 are revealed in
Fig. 5.(a), Fig. 5.(b) and Fig. 5.(c). At the QoS level 1, the
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distribution of the p training patterns in T , the set O1(p),
and the optimal allocation xO1(p) are shown in Fig. 5.(a).
The variations in O1 and xO1

by incorporating a new training
pattern {xp+1,yp+1} to T are then revealed in Fig. 5.(b) and
Fig. 5.(c), where xp+1 = xO1(p). Fig. 5.(b) reveals the sets
O1(p+1), and the optimal allocations xO1(p+1) for the positive
responses yp+1 = 7 and 12. The impact of negative responses
with yp+1 = 1 and 6 are shown in Fig. 5.(c).

It can be observed from Fig. 5.(b) that the set O1 extends
when a positive response is received. This would in turns
lower the total bandwidth |xO1

|. These numerical results are
consistent with their analytical counterparts shown in (35)(36).
Moreover, we can see from Fig. 5.(c) that a negative response
would dwindle the set O1, and increase the total bandwidth
|xO1 |, which are also consistent with (40)(41).

We can also see from Fig. 5 that different service response
levels incur different degrees of variations in O1 and |xO1

|.
As shown in Fig. 5.(b), O1(p + 1, 7) ⊆ O1(p + 1, 12) and
|xO1

(p+ 1, 7)| > |xO1
(p+ 1, 12)| for positive response levels

yp+1 = 7 and 12. These results in Fig. 5.(b) comply with
those in (37)(38). It can also be observed that negative response
levels yp+1 = 1 and 6 in Fig. 5.(c) would result in O1(p +
1, 6) ⊇ O1(p + 1, 1) and |xO1(p + 1, 6)| ≤ |xO1(p + 1, 1)|.
The variations in Fig. 5.(c) therefore also comply with those
in (42)(43).

The behavior of the proposed algorithm for QoS level 2 are
shown in Fig. 5.(d), Fig. 5.(e) and Fig. 5.(f). Based on the
same profile T , it can be observed from Fig. 5.(a) and Fig.
5.(d) that O2(p) ⊆ O1(p). Therefore, |xO1(p)| ≤ |xO2(p)|. The
bandwidth allocated to QoS level 2 is larger than that to QoS
level 1. Similar to the experiments for QoS level 1, we can see
from Fig. 5.(e) and Fig. 5.(f) thatO2 enlarges and shrinks when
positive and negative responses are received, respectively.
Furthermore, from Fig. 5.(e) and Fig. 5.(f), different degrees of
variations in O2 and |xO2

| can also be observed for different
service response levels.

To further elaborate the QoS-aware features of the proposed
algorithm, Fig. 6 shows the variations of |xO| to all the
possible levels of new service responses yp+1. Because all
QoS levels of the proposed algorithm are QoS aware, only the
QoS level 1 is considered as an example. The variations of
|xO| to yp+1 = k at QoS level 1, denoted as ∆|xO1

|, is given
by

∆|xO1
| = |xO1(p+1,k)| − |xO1(p)|. (44)

It can be observed from Fig.6.(a) that ∆|xO1
| grows as the

service response level decreases in the proposed algorithm. It
will carry out the maximum bandwidth deduction when the
service response is at the highest level (i.e., level 12) so that
more bandwidth can be allocated to other services in need.
On the contrary, the maximum bandwidth increase will be
enforced when the service response is in the lowest level (i.e.,
level 1) to improve the quality of subsequent transmissions.

The existing quality prediction algorithms such as kNN [11]
and artificial neural networks (ANN) [14], [15] algorithms
for the bandwidth allocation are also considered in Fig.6 for
comparison purpose. To adopte the ANN algorithm, the profile
T is used for the training of the neural network. The trained

neural network is then used to find the region O1 and xO1
. The

operations of kNN algorithm are also based on T . A bandwidth
allocation x will be assigned to O1 when the majority of its k
nearest allocations in T are also belong to O1. We set k = 3
for the kNN experiments. It can be observed from Fig. 6.(b)
that the ANN algorithm may not be QoS aware. As shown in
6.(b), for the response levels 4 and 6, which are considered
as negative responses, the allocated bandwidth will be further
decreased. On the contrary, for the response level 7, the ANN
will increase the total bandwidth even the response level is
a positive one. Although the kNN algorithm is QoS aware,
as shown in Fig. 6.(c), all the negative responses and positive
responses will lead to the same increment and decrement in the
bandwidth allocations, respectively. This may not be favorable
for the source data with fast varying data rate.

B. Single-service experiments
In the next experiment, a single-service multiple-

transmission scenario is considered. There are also two
links in the example. The distribution of the source data to
each link is dependent on the bandwidth allocation. Let rj is
the source data rate assigned to the j-th link. The assignment
is then based on

rj = R
xj
|x|
, (45)

where R is the source data rate. For each link j with data rate
rj , traffic control algorithms such as token bucket algorithm
are then employed based on xj . The proposed algorithm is
applied to each transmission for determining x. The ERAB
given by (16) is used for determining the service response
levels. There are 12 service levels (i.e., L = 12) and 3 QoS
levels (i.e., Q = 3) in the experiment. The mapping from
ERAB to service response level k is given by (17), where

ηk = −12.5 Mbps+(k−1)× 2.5 Mbps, k = 1, ..., L−1. (46)

We set a1 = 7, a2 = 8, and a3 = 9 for the mapping from the
service response levels to QoS levels.

Therefore, from (10)(11), it follows that the predicted ser-
vice response levels P (x) for x in QoS levels 1, 2 and 3
(i.e.,P (x) for x ∈ O1, O2, and O3) are larger than or equal
to 7, 8 and 9, respectively. Consequently, from (17)(46), we
see that the predicted ERAB for x in QoS levels 1, 2 and 3
are larger than or equal to 0 Mbps, 2.5 Mbps and 5.0 Mbps,
respectively.

Fig. 7 shows the total bandwidth allocated by GRNN algo-
rithm for providing the services with various QoS levels for 25
transmissions. The source data rates for the services are also
included for comparison purpose. These numerical results are
obtained by Matlab. Fig. 7.(a), Fig. 7.(b) and Fig. 7.(c) reveal
the total bandwidth for QoS levels 1, 2 and 3, respectively. All
the experiments are based on the same source data rates and
initial profile. Because the predicted ERAB for QoS level 1 is
larger or equal to 0 Mbps, it can be observed from Fig. 7.(a)
that the proposed algorithm is able to provide fast tracking
of the source data rates. Although the bandwidth prediction
errors are likely to occur when source data rates exhibit high
variations, the fast tracking property offers an advantage that
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Fig. 6. Comparisons of various quality prediction techniques. (a) Incremental bandwidth ∆|xO1
| for different new service response levels yp+1 by the proposed

algorithm. (b) Incremental bandwidth ∆|xO1 | for different new service response levels yp+1 by the ANN algorithm. (c) Incremental bandwidth ∆|xO1 | for
different new service response levels yp+1 by the kNN algorithm.
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Fig. 7. The total bandwidth allocated by the proposed GRNN algorithm for providing the services with various QoS levels for 25 transmissions. (a) QoS level
1. (b) QoS level 2. (c) QoS level 3.

prediction errors in the current transmission may be effectively
compensated in the subsequent transmissions. For example,
as the source data rate plunges from 75 Mbps to 50 Mbps
during transmission 16, the proposed algorithm also reduces
its allocation to 51.0 Mbps in transmission 18. This advantage
is beneficial for maintaining low RABs and low DLRs.

As shown in Fig. 7.(b) and Fig. 7.(c), the total bandwidth
offered by the proposed algorithm for QoS level 2 and level
3 are approximately 2.5 Mbps (or above) and 5.0 Mbps (or
above) higher than the source data rates for most of the
transmissions because the predicted ERAB is larger or equal
to 2.5 Mbps and 5.0 Mbps, respectively. Positive predicted
ERABs are advantageous for reducing the possibilities of
data loss for source data rates with large fluctuation at the
expense of higher RABs. These facts can also be confirmed
in Table I, which includes the average RABs and DLRs per
transmission for each QoS level. We can see from the table that
the average DLR decreases and average RAB increases as QoS
level increases. In particular, the average DLR decreases from
0.88 Mbps per transmission to 0.05 Mbps per transmission, and

TABLE I. THE AVERAGE RAB AND AVERAGE DLR OF THE PROPOSED
ALGORITHM FOR DIFFERENT QOS LEVELS.

QoS Level 1 2 3
Average 1.55 4.32 7.49
RAB Mbps/trans. Mbps/trans. Mbps/trans.

Average 0.88 0.18 0.05
DLR Mbps/trans. Mbps/trans. Mbps/trans.

the average RAB increases from 1.55 Mbps per transmission
to 7.49 Mbps per transmission, as QoS level goes up from
level 1 to 3. Higher QoS levels therefore is well suited for
services where DLRs are the important concern.

To further demonstrate the effectiveness of the proposed
algorithm, numerical comparisons with existing algorithms are
also made based on the same source data rates. The QoS
level 1 of the proposed algorithm in Fig. 7.(a) is considered
for the comparison. It is compared with a fixed-size adaptive
bandwidth allocation scheme, the simplified GRNN-based al-



2327-4662 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2017.2707094, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL 10

5 10 15 20 25
45

50

55

60

65

70

75

80

85

Transmission Number

B
an

dw
id

th
 (

M
bp

s)

 

 
Fixed−Size 3Mbps
Source Data rate
Fixed−Size 6 Mbps

5 10 15 20 25
45

50

55

60

65

70

75

80

85

Transmission Number

B
an

dw
id

th
 (

M
bp

s)

 

 
Simplified GRNN
Source Data Rate

5 10 15 20 25

40

45

50

55

60

65

70

75

80

Transmission Number

B
an

dw
id

th
 (

M
bp

s)

 

 
kNN
Source Data Rate

(a) (b) (c)

Fig. 8. The total bandwidth allocated by existing techniques for 25 transmissions. (a) Fixed size algorithms with δ= 3 Mbps and 6 Mbps. (b) Simplified GRNN
algorithm. (c) kNN algorithm.

location scheme in [22] and the kNN algorithm in [11]. Fig.
8 shows the total bandwidth of the existing algorithms for 25
transmissions. In the fixed size algorithms, the total bandwidth
is increased by δ (i.e., bandwidth in each link is increased by
δ/2) when the DLR is above 0. Otherwise, the total bandwidth
is decreased by δ (i.e., bandwidth in each link is decreased
by δ/2). Fig. 8.(a) shows total bandwidth of the fixed size
algorithm with δ = 3 Mbps and δ = 6 Mbps. Fig. 8.(b)
reveals the total bandwidth of the algorithm in [22], which
can be viewed as a special case of the proposed algorithm
with L = 3 and Q = 2. The total bandwidth of the kNN
algorithm is shown in Fig. 8.(c). The proposed algorithm and
the existing techniques in Fig. 8 can all be viewed as the
staircase approximations of the source data rates.

It can be observed from Fig. 7.(a) and Fig. 8.(a) that the
fixed rate algorithm can provide fast adaptations to source
data with larger step size δ = 6 Mbps. However, in this case,
the step size could be too large relative to a flat segment of
the source data rate, causing large granular errors. On the
contrary, smaller step size δ = 3 Mbps is able to reduce
granular errors at the expense of lowering the promptness to
the large variations of the source data rate. Therefore, in both
cases, the corresponding average RABs and/or average DLRs
may be larger than those of the proposed algorithm, as shown
in Table II. For the algorithm in [22], there are only three
service response levels (i.e., L = 3). Therefore, it would be
difficult to feedback information regarding to different levels
of network utilization. Consequently, we can also see from
Fig. 7.(a) and Fig. 8.(b) that the algorithm in [22] is not able
to provide fast adaptation when the source data rate reduces.
Consequently, from Table II we can see that the algorithm
also has higher average RAB as compared with the proposed
algorithm. Similar to the simplified GRNN algorithm, the
kNN is not able to carry out prompt tracking of source data.
The kNN therefore also has large average RAB and average
DLR. Based on the comparisons stated above, it can then be
concluded that the proposed algorithm is able to effectively
offer both steady and prompt adaptation to different variations
of source rates as compared with its counterparts.

Fig. 9. The real LAN network for the implementation and performance
evaluation of the GRNN.

In addition to the Matlab-based simulations shown above,
the practical implementations of the proposed GRNN algo-
rithm in a real LAN network are also considered. As shown
in Fig. 9, the LAN consists of 3 bridges: Bridges 1, 2, and
3. Bridges 1 and 2 are connected by two Ethernet links.
Bridge 3 is connected to the other two by WiFi. We carry
out the QoS management over the two-link system connecting
Bridges 1 and 2. The implementation of each bridge is based
on Raspberry Pi 3, which provides both wired Ethernet and
WiFi for networking. The Open vSwitch [23] is deployed in
each bridge for traffic queuing and packet shaping.

The proposed GRNN algorithm is able to operate in con-
junction with the Open vSwitch. The GRNN algorithm is
deployed in Bridge 3, which collects the traffic condition
information such as ERABs from the other bridges. Based
on the information, the GRNN algorithm then computes the
new bandwidth allocation for the next transmission. The new
bandwidth allocated to each link is sent to Bridge 1 for subse-
quent packet shaping operations. The bandwidth information is
delivered as a GroupMod/FlowMod event based on OpenFlow
protocol. The delivery is carried out as a secure shell (SSH)
command execution.

In the Open vSwitch, the token bucket algorithm is em-
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TABLE II. THE AVERAGE RAB AND AVERAGE DLR OF VARIOUS ALGORITHMS FOR QOS LEVEL 1.

Proposed Fixed Rate Fixed Rate Simplified kNN
( QoS Level 1) (δ = 3 Mbps) (δ = 6 Mbps) GRNN

Average 1.55 5.70 4.20 5.69 1.93
RAB Mbps/trans. Mbps/trans. Mbps/trans. Mbps/trans. Mbps/trans.

Average 0.88 0.48 1.38 0.62 2.90
DLR Mbps/trans. Mbps/trans. Mbps/trans. Mbps/trans. Mbps/trans.
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Fig. 10. The total bandwidth allocated by the proposed GRNN for offering
services with QoS level 1 for 25 transmissions in a real LAN. The results of
Matlab-based simulation are also included for comparison purpose.

ployed for packet shaping. Each link is associated with a
dedicated token bucket whose token rate is identical to the
bandwidth allocated to that link by the proposed GRNN algo-
rithm. A link aggregation scheme well suited to the proposed
algorithm is implemented so that the packet distribution from
the source to each link can be carried out by (45). The source
packets are the UDP packets generated by the Iperf [24].

Fig. 10 shows the measurements of the two-link system
shown in Fig. 9 for QoS level 1 management for 25 trans-
missions. The source data rates and the corresponding Matlab-
based simulation results are also included in the figure. In the
real network, although practical bridges with limited computa-
tional capacity are adopted, we can still see from Fig. 10 that
the discrepancy between allocation results in the real LAN and
the Matlab-based simulation is small. Therefore, the proposed
algorithm is still able to carry out fast tracking of source data
rates for the real system. Moreover, it exhibits QoS-aware
behavior for the practical bridges for most of the transmissions.
These facts confirm the effectiveness of the proposed algorithm
for real LAN environments.

C. Multiple-service experiments
The extension of the proposed algorithm from a single-

service scenario to a multiple- service one is straightforward.

A multiple service system would first sort all of its services
for bandwidth allocation in accordance with their QoS levels.
A service with higher QoS level will have higher priority. In
cases two or more services have the same QoS level, earlier
services obtain higher priority. Starting from the service with
highest priority, the proposed algorithm carries out the QoS-
aware allocation one service at a time until the service with
the lowest priority is completed.

The proposed algorithm with different search spaces will be
applied to services with different priorities. The search space
for the service with top priority is identical to that for the
single-service cases. That is, the search space would be B
given in (5) for the top priority service. For the lower priority
services, the search space would be reduced. Given a service s
for bandwidth allocation, let Uj be the sum of the bandwidth
for link j allocated to all the services with higher priorities than
the service s. Therefore, the bandwidth of link j available to
the service s is Bj − Uj . Let Bs be the search space for the
service. It then follows that

Bs = {x : xj = c∆, 0 ≤ xj ≤ Bj − Uj}. (47)

The evaluation of the proposed algorithm for multiple-
service scenario is revealed in Fig. 11 and Table III. There
are five services (denoted by Service s, 1 ≤ s ≤ 5) in
the scenario. Assume that Service s have lower priority than
Service t if s < t. Different services have different input
sources. Two transmission links are shared by the services. The
maximum bandwidths for links 1 and 2 are B1 = 100 Mb/s,
and B2 = 100 Mb/s, respectively. The proposed algorithm with
12 service response levels (i.e., L = 12), and two QoS levels
(i.e., Q = 2). The mapping from ERAB to service response
level k is also given by (17). Moreover, the mapping from the
service response levels to QoS levels is given by a1 = 7 and
a2 = 8. The predicted EARB in QoS levels 1 and 2 therefore
should be larger than 0 Mbps, and 2.5 Mbps, respectively. In
the experiment, Service 1 and Service 2 are delivered with
QoS level 2. The other three services are delivered with QoS
level 1.

The total allocated bandwidth of the proposed algorithm for
single-service cases are also included in Fig. 11 and Table
III for comparison purpose. For the single-service cases, the
search space is B. Therefore, for each service, by comparing
the multiple-service and single-service transmissions based
on the same source data rates, the impact of reduction in
search space can be observed. Because Service 1 has the top
level priority, the search space for multiple-service and single-
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Fig. 11. The evaluation of the proposed GRNN algorithm for multiple-service scenarios. (a) Service 1 with QoS level 2. (b) Service 2 with QoS level 2. (c)
Service 3 with QoS level 1. (d) Service 4 with QoS level 1. (e) Service 5 with QoS level 1.

service scenarios are the same. This will then result in the same
bandwidth allocation for both cases. Consequently, as shown
in Fig. 11.(a), only the source data rates and total allocated
bandwidth of the single-service scenario are revealed. For other
services, the source data rates, the total allocated bandwidth
for multiple-service and single-service scenarios are included.
It can be observed from Fig. 11 that both multiple-service and
single service system have similar total allocated bandwidth
for each service.

For the services with higher priorities such as Service 2
and Service 3, the total allocated bandwidth for both scenarios
are almost identical, as revealed in Fig. 11.(b) and Fig.
11.(c). Consequently, both scenarios also have almost identical
average RABs and average DLRs, as shown in Table III.
A small difference can be observed for services with lower
priorities such as Service 4 and Service 5. Nevertheless, the
proposed algorithm is still able to provide fast adaptation to
the variations of source data rates. It can also be observed
from Table III that the discrepancies between both scenarios in
average RABs and in average DLRs are still small for Service
4 and Service 5. All these facts demonstrate that the reduction
in search space may incur only limited impact to the proposed
algorithm for the applications of multiple services.

TABLE III. THE AVERAGE RAB AND AVERAGE DLR OF THE
PROPOSED GRNN ALGORITHM FOR MULTIPLE-SERVICE SCENARIOS.

Single Service Multiple Service
Average Average Average Average

RAB DLR RAB DLR
Service 1 3.43 0.11

Mbps/trans. Mbps/trans.

Service 2 2.89 0.29 2.89 0.29
Mbps/trans. Mbps/trans. Mbps/trans. Mbps/trans.

Service 3 0.43 0.19 0.50 0.33
Mbps/trans. Mbps/trans. Mbps/trans. Mbps/trans.

Service 4 0.50 0.72 0.71 0.74
Mbps/trans. Mbps/trans. Mbps/trans. Mbps/trans.

Service 5 0.80 1.03 1.62 1.53
Mbps/trans. Mbps/trans. Mbps/trans. Mbps/trans.

VI. CONCLUSION

The analytical and experimental results reveal that the pro-
posed GRNN-based service response prediction algorithm is
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beneficial for the QoS management of heterogeneous local area
home networks. The analytical study show that the proposed
algorithm is scale- and shift- invariant and QoS- aware. The
algorithm therefore provides flexibilities for the assignment of
service response values without sacrificing the performance.
Moreover, it is able to carry out active bandwidth allocation
offering rapid and accurate adaptation to different data sources.
These facts are furthered confirmed by numerical experiments
for single- and multi-service scenarios. As compared with
the adaptive bandwidth allocation counterparts having only
fixed step size or small number of response levels, the pro-
posed algorithm provides both lower granular errors and faster
promptness to different variations of source data rates. The
algorithm is then an efficient alternative for the tracking and
management of home network services.

APPENDIX A
NOMENCLATURE

To facilitate the understanding of the proposed algorithm, a
list of some frequently used symbols is summarized below.

aq The lowest service response level for attaining
QoS level q.

Bj Maximum bandwidth of link j.
B Set of all possible bandwidth allocations.
L Number of service response levels.
n Number of links for bandwidth allocation.
Oq Set of bandwidth allocations predicted to carry

out service at QoS level q.
Oq(p) The set Oq obtained from GRNN containing

p training patterns.
Oq(p+ 1, k) The set Oq obtained from GRNN containing

p+ 1 training patterns, where the (p+ 1)-th
pattern has element yp+1 = k.

P (x) Predicted service response level of an
bandwidth allocation x.

Q Number of QoS levels.
R Source data rate.
Sk Set of bandwidth allocations predicted to

receive service response at level k.
T The training set for service quality prediction.
xj The bandwidth of link j.
x A bandwidth allocation.
|x| Total bandwidth of the bandwidth allocation x.
xi An element of the i-th training pattern of set T .

It is a bandwidth allocation for QoS
management.

xOq
The minimum bandwidth allocation of set Oq .

yi An element of the i-th training pattern of set T .
It is a service response to xi for QoS
management.

y∗ The output of a GRNN network.
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