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Fig. 9: Different pipeline implementations. Left: two-stage pipeline presented in LPIRC; Middle: three-stage solution for BING-based
implementation, aiming to alleviate the overhead of data transfer through network; Right: duplicated region proposal modules
for Edge-Boxes-based implementation, aiming to increase the overall throughput.

Therefore we implement a system with two module running
Edge-Boxes algorithm simultaneously, writing results to the
same queue, as illustrated in the right of Fig. 9. With dupli-
cated modules, the throughput of the first stage is greatly
increased and thereby the overall detecting process is accel-
erated. Our results demonstrate that a relative 50% speedup
can be achieved with duplicated modules compared to the
original Edge-Boxes-based implementation.

According to our experiments, a single Edge-boxes mod-
ule costs 260MB memory while a BING module costs only
8MB. The neural network module typically costs 700-800MB
memory usage depending on the size of input image.
The overall memory usages of different systems are listed
in Table. 3. Notice that the system takes about 160MB
of memory. Considering the overall available memory on
Tegra K1 is about 1900MB, the two-threaded Edge-boxes
solution aggravate the risk of memory failure. During the
competition, we limit the max size of image to 1000 pixels
to avoid memory failure.

TABLE 3: Memory usage of different systems

System Memory Usage(MB)
Edge-boxes, pipeline 980-1230

Edge-boxes, two threads 1240-1530
BING, two-stage pipeline 900-930

BING, three-stage pipeline 940-970

4.3.3 Additional optimizations
In the LPIRC competition, we found that the network
interface bandwidth became the bottleneck of our BING
detector when the detection speed was fast enough. To deal
with this problem, an option is to divide the system into
more stages as shown in the middle of Fig. 9. Though the
last two modules, NMS and uploading module, cost less
amount of computations, their speed is limited by network
bandwidth. In this case, another queue is inserted into the
mid of the classifier and the NMS module to buffer the
data. Our further experiments demonstrate a relative 43%
speedup over the original two-stage BING-based system.

Another method to improve the latency is to compute
the convolutional layers simultaneously with the region
proposal method, just as shown in Figure 5. In the sense
of latency, it helps as the critical path for the first image is

changed from ”Region Proposal – CONV – FC” to ”Region
Proposal(CONV) – FC”. However, it helps little with the
overall throughput. The overall throughput depends mainly
on the bottlenecks, which in this case both are the Region
Proposal module. It may help in some extremely latency-
sensitive cases such as self-driving.

4.4 Exception Handling
Due to the existence of some special images in Image-Net
dataset and possible prediction errors, the system should be
robust enough to handle common exceptions. We have met
and handled the following exceptions: file corruption; gray-
scale images; images with no proposal generated; super-
large-scale images that cause memory error in Edge-Boxes
module. Images with any of the above features are passed
during competition. During the competition we limit the
scale of an image to 1000 and set a timeout limit of Edge-
Boxes module to 3 seconds.

4.5 Analysis of Faster R-CNN
On desktop, Faster R-CNN’s speed advantage mainly comes
from replacing region proposal with RPN, as shown in
Figure 5. However, it is noticed in Table 4 that, Edge-Boxes
on Tegra K1 takes 60% of total time, while it takes 80%
on the desktop. As they are near-balanced on CPU and
GPU, region proposal and CNN can be parallelized, hence
greatly increases the overall throughput. That implies Faster
R-CNN may not have such large advantage on Tegra K1.

On the other hand, RPN runs fully on GPU and takes
additional 0.13s on Tegra K1. It leads to a total runtime
of 1.08s. Compared with our duplicated-modules two-stage
pipeline(1.06s), Faster R-CNN may not have advantage
in speed. Still, Faster R-CNN has lower power consump-
tion(due to lower CPU workloads) and higher mAP [26]
than Fast R-CNN.

5 TRAINING DETAILS

The training procedure is performed upon the framework
of R-CNN and Fast R-CNN with minor modifications
to fit different proposal methods and additional data of
ILSVRC2014. In the training dataset, images are NOT ex-
haustively annotated. Therefore, there are questions about
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how to effectively train the detection models. In R-CNN
[11], the author chooses to rely heavily on the validation
set. Following a strategy similar to R-CNN, we split the
validation set into val1 and val2 with balanced distribution
of every object class. During training, val1 plus the auxiliary
ILSVRC2014 training dataset is used. Unlike what Girshick
et al. [11] did, we do not use the ILSVRC2013 training dataset
because we notice that the ILSVRC2014 dataset is better
annotated and as well large enough for training. Also, we
discard all the images without any object in ground-truth to
improve the quality of our training data.

We start with the CaffeNet model [32] and add a
bounding-box regression layer to it. In order to prepare
more training data, both Selective Search and Edge-Boxes
methods were used to generate region proposals (4k pro-
posals per image in total). It is observed that training with
proposals generated by both proposal methods provides
better results than training with any single method alone.
In the first stage, the object proposals provided by Edge-
Boxes and Selective Search are exploited to train the model
with a larger learning rate (we set the initial learning rate
10−3). The model of this stage will be used for the Edge-
Boxes detector. It is noticed that, training with both two
proposal sets provides better results than that with any one
set (see Table 7 in Section 6 for details). We conjecture that
the selective search proposals help avoiding the model from
over-fitting.

For Edge-Boxes-based detection system, the CNN model
is further fine-tuned with the proposals provided by BING.
We do not fine-tune the CNN model with proposals pro-
vided by BING directly due to the unsatisfying quality of
proposals generated by BING. It may cause the deterioration
of detection accuracy. To distinguish with the concept of
domain-specific fine-tune proposed in R-CNN [11], we name
this procedure task-specific fine-tune, which implies that neu-
ral network has capability to adapt to different front-end
methods.

6 EXPERIMENTAL RESULTS

In this section, we first present our results in LPIRC. During
the competition, all data are transferred through LAN. After
that, an analysis based on local experiments is given. The
effectiveness of the proposed pipelined detection systems is
evaluated by comparing with other platforms and exploring
the design space. The influences of different training meth-
ods are also investigated.

In the experiments, two CNN models pre-trained with
ILSVRC dataset are used, including the original CaffeNet in
Edge-Boxes-based implementation and CaffeNet with trun-
cated SVD in BING-based implementation. This is because
the Edge-Boxes-based solution is designed to optimize accu-
racy while the BING-based solution is designed specifically
for high speed. The two models are trained as described in
Section 5. Offline experiments are performed with images
pre-stored on the internal flash memory of Jetson TK1
platform. Online experiments are performed with a server
connected via 100Mbps Ethernet.

6.1 Results in LPIRC
In LPIRC, we proposed two solutions including a BING-
based one and an Edge-Boxes-based one. The BING-based

Fig. 10: Running time of the CNN in detection pipeline with different
region proposal number. Reduced stands for the pruned network for
BING-based implementation; Original stands for the network adopted
in Edge-Boxes-based implementation. Time cost increases almost lin-
early with the number of proposals. The intercept on y-axis stands for
time cost of CONV layers. The slope stands for one-frame time cost of
FC layers.

solution achieved the mAP of 2.971e-2 (over 5000 images)
and the energy cost of 1.634W/h . The Edge-Boxes-based
solution achieves the mAP of 1.816e-2 and the energy cost
of 1.574 Watt-Hour. The final score of mAP/energy for
BING-based and Edge-Boxes-based solutions are 1.818e-2
and 1.154e-2, respectively. The two solutions won the first
prize, the third prize and the Highest Accuracy with Low
Energy prize.

It should be noted, as mentioned in Section 2.3, only 10
minutes were given for the detection systems to process
images. In this case, the proposed systems only processed
hundreds of images, which were only a small set of the
5000-image test dataset. However, the mAP results were
calculated over all 5000 images. Consequently, the mAP
results in LPIRC are far lower than theoretical values.

With our further experiments, the Edge-Boxes-based sys-
tem is proved to achieve a higher accuracy compared with
the BING-based system. However, the advantage of Edge-
Boxes-based systems on accuracy is not enough to com-
pensate the influence of its relatively lower speed. Conse-
quently, the BING-based solution achieved a better result in
LPIRC by processing more images.

6.2 Analysis of Parameter Selection
Selection of proposal number. Number of generated region
proposals determines the total amount of computations of
the CNN classifier. As illustrated in Fig. 10, the classifier’s
runtime increases almost linearly with the input number of
proposals. The intercept and the slope corresponding to the
one-frame time cost of CONV layers and fully-connected
layers, respectively. As shown in Fig. 11, 150-250 is the
approximate turning point of the accuracy curve.

In [16], the relationship between accuracy and the region
proposal number is analyzed. However, the analysis in [16]
does not cover the situation when the proposal number is
below 1000. For real-time detection, processing more than
1000 proposals would be quite computation-expensive. As
illustrated in Fig. 10, the runtime of the CNN doubles when
the number of proposals increases from 200 to 1000, while
mAP increases by merely 1.4% as shown in Fig. 11. Con-
sidering that, in our implementation, for each image, 200
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Fig. 11: The mAP results on the ILSVRC validation set with different
region proposal extraction methods. When the number of region pro-
posals increases from 20 to 1000, the mAP also rises. However, when
the number of region proposals exceeds 200, little precision gain can be
obtained with the increase of region proposal number.

Fig. 12: Running time of CNN classifier under different scales.

region proposals are extracted to achieve a high speed while
introducing no significant accuracy drop. Consequently, we
choose an empirical number 200 as the number of proposals.

Selection of image scales. In [16], the author analyzed
the trade-off between multi-scale detection and single-scale
detection. We show that in single-scale detection, the scale
size can greatly influence the final performance. As the
accuracy of a wisely-chosen scale can achieve similar results
with multi-scale detection(less than 2% loss of mAP [16]),
we mainly focus on the running time of CNN module as
shown in Fig. 12. According to the curves, different scale
ranges are selected for Edge-Boxes-based system and BING-
based system.

6.3 Analysis of System Implementation

Comparison of platforms. The energy efficiency of neural
network is of prior concern as it exists in almost all detection
algorithms. Here we tested the speed and power consump-
tion of AlexNet on four platforms: Tegra K1 GPU, ARM
Cortex A-15, Intel Xeon E5-2690, Tesla K40. Other embedded
platforms, like Intel Atom or AMD G-Series processors, has
been demonstrated less energy efficient than ARM [33]. The
power of Xeon E5-2690 is measured with Intel Performance
Counter Monitor. The power of Tesla K40 is measured with
nvidia-smi utilities. According to Table 5, the embedded
GPU has the highest energy efficiency.

We give a rough comparison of Jetson Tegra K1 platform
and PC platform regarding the performance of different
modules in Table 4. The runtime of Edge-Boxes and BING

52.4%

34.4%

1.6%

8.8%

2.8%

34.1%

37.1%

3.4%

19.6%

5.8%

Proposal CNN NMS Upload Download

total runtime = 2.79s total runtime = 1.27s

Fig. 13: Percentage of different modules’ running time in no-pipeline
design. Left: Edge-Boxes-based implementation. Right: BING-based
implementation.

on PC comes from third-party results provided by Hosang et
al. [28]. In the original paper of Edge-Boxes [27] the runtime
is given as 0.25s. In that of BING [29], the runtime is given
as 0.003s, however, such a speed is obtained by excessive
approximations [35], thus not adopted here. The experiment
of CaffeNet on PC platform is performed with a Tesla K40.
Due to the diversity of PC configuration and fluctuation of
energy consumption, we only give an approximate estima-
tion of overall power. The power of PC is underestimated as
150W, which is merely the sum of the net power of Tesla K40
and Intel Xeon E5-2690. The power of Tegra K1 is measured
with a power meter during the runtime. This comparison
shows that Jetson TK1 has advantage over the desktop in
energy efficiency, no matter CPU or GPU is the bottleneck
of the whole system.

As FPGA provides higher energy efficiency compared to
GPU, here we comparse the performance of the state-of-
art FPGA accelerator and mobile GPU. To the best of our
knowledge, we have not found any FPGA platform that is
able to run fast or faster R-CNN. So we simply compare the
power efficiency of convolutional layers between Tegra K1
and the recent state-of-art FPGA solution [36]. The power ef-
ficiency of Tegra K1 is 2.45GOPs/W/s, while that of FPGA is
19.5 GOPs/W/s [36]. In the sense of power efficiency, FPGA
outperforms mobile GPU by a large margin. However, the
major obstacles of are FPGA includes

• Thorough study of accuracy-precision relationship of
object detection algorithms. Most FPGA platforms
only support low precision algebra, or higher pre-
cision will lead to little advantage over mobile GPU
solution [15], [36].

• More support for special layers like ROI pooling.
Otherwise mobile CPU has to do it, which is rather
energy inefficient.

• An easier interface is needed to build a flexible
system.

Due to these unsolved problems, mobile GPU is considered
as a more preferred choice.

Analysis of module-wise running time. We perform
module-level time/energy analysis under different circum-
stances as illustrated in Fig. 13. The detection procedure is
set in the same way as in LPIRC. The final running times of
different modules are averaged over 500 images randomly
sampled from the validation dataset. The time cost of net-
work interface, though varying by the network conditions,
provides a qualitative comparison to other modules. It is no-
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TABLE 4: Comparison of runtime on different platforms

Platform ComparisonJetson TK1 PC
Region Proposal CNN Region Proposal CNN Region Proposal CNN

Runtime/s Edge-Boxes-based 1.46 0.96 0.3∗ [28] 0.080 4.9× 12×
BING-based 0.43 0.47 0.2∗ [28] 0.045 2.2× 10.7×

TABLE 5: Performance and Power consumption of CNN on
four platforms.

Platforms Speed(fps) Power(W) Energy Efficiency
(fps/W)

ARM Cortex A-15 0.188 1.1 [34] 0.171
Tegra K1 GPU 4.20 2 [17] 2.098

Intel Xeon E5-2690 0.682 40 0.017
Tesla K40 38.6 112 0.344

Fig. 14: Comparison of the speeds of online and offline detection,
measured with the metric frame per second(fps). Offline: Data of the
two-stage systems read and store locally; Online: Data are transferred
between server through Ethernet; Extra: Our three-stage implementa-
tion aiming to alleviate the network overhead.

ticed that, in the Edge-Boxes-based implementation, Edge-
Boxes algorithm takes up more than half of the total time
consumption, while in the BING-based implementation,
the three parts of time costs, i.e. BING, pruned CaffeNet,
and data download/upload, are of the same magnitude.
It suggests different pipeline strategies should be adopted
regarding different time consumption make-ups.

Network overhead. To measure the overhead of data
transmission through network, experiments to test the
speed of online detection (images and results are transferred
through LAN by HTTP protocol as required in LPIRC) and
offline detection (images and results are stored on disk or
flash) are illustrated in Fig. 14. In the Edge-Boxes-based im-
plementation, the overhead of network is largely covered by
the runtime gap of proposal generation and CNN classifier.
However, in the BING-based implementation, the overhead
of data transmission makes a huge difference in the overall
performance. For competitions like VOC and ImageNet, the
proposal number is usually set above 2000 [11], [16], but
for LPIRC, setting it to 2000 would greatly slow down the
detection.

Overall performance. We list the overall results as a
summary in Table 6. It should be noticed that we did not
present the solutions of duplicated modules and three-stage
pipeline in the competition. With more comprehensive anal-

ysis of the original two implementations, the duplicated-
module Edge-Boxes implementation achieves 59% relative
speedup and the three-stage BING implementation achieves
43% relative speedup. However, we find that three-stage
BING implementation greatly increases the power, thus
leads to worse energy efficiency compared with the original
two-stage pipeline.

6.4 Analysis of CNN Model

In this section, we evaluate the influence of different training
methods and implementation settings over the accuracy.
The results of detection accuracy with different region pro-
posal extraction methods are presented in Table 7. In Ta-
ble 7, “EB” stands for Edge-Boxes, “SS” stands for Selective
Search, and “BBox-reg” stands for bounding box regression.

Previous work of R-CNN [11] has demonstrated the im-
portance of choosing the training dataset. However, in R-
CNN, Selective Search is used for both training and test-
ing. We investigate how the different proposal methods in
training and testing can be combined and influence the final
results. Results from different sets of proposals to train the
CNN model for BING-based detector are also presented in
Table 7. Training with low-precision proposals deteriorates
the mAP by almost a half, probably because true objects
are overwhelmed by irrelevant backgrounds. For example,
as shown in the 2nd row and the 5th row, though both
experiments have used Edge-Boxes and Selective Search for
region proposal extraction in test time, training with Edge-
Boxes algorithm leads to a 9.0% mAP advantage compared
with training with BING.

The impact of bounding box regression is also investi-
gated as the characteristics of the network. Using the same
region proposal extraction algorithms in both training and
testing, experiments with bounding box regression achieved
a higher mAP. Compared the results in the 2nd row and 4th
row of Table 7 with the results shown in the 3rd row and
the 7th row, on average an mAP gain of 2.15% is led by the
bounding box regression.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose an energy efficient pipelined
implementation for object detection on embedded systems,
identify certain bottlenecks and propose a series of solutions
to achieve a better performance. Our proposed detection
system can run Fast R-CNN at 1.85fps. Though algorithms
evolve rapidly, this work provided an interesting example of
CPU & GPU cooperation. We also analyzed the bottleneck of
the current algorithms on a heterogeneous platform, which
could possibly inspire the researchers to develop hardware-
friendly algorithms.

As discussed in Section 3.2, most object detection algo-
rithms, like R-CNN and Fast R-CNN, require traditional
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TABLE 6: Overall power efficiency statistics of different systems. The experiments are online with server connected via
100Mbps LAN. Results of speed are averaged over 100 images.

Method Implementation Runtime(sec/img) Power(W ) Energy Efficiency(W−1s−1)
Edge-Boxes no pipeline 2.79 4.7 0.076
Edge-Boxes two-stage pipeline 1.69 6.1 0.097
Edge-Boxes two-stage pipeline, duplicated modules 1.06 8.1 0.116

BING no pipeline 1.27 4.6 0.171
BING two-stage pipeline 0.77 5.4 0.241
BING three-stage pipeline 0.54 9.0 0.206

TABLE 7: Detection accuracy results under different training
and testing settings

Algorithm in Training BBox-reg Proposal source mAP(%)
Edge-Boxes Y EB + SS 26.0
Edge-Boxes N EB + SS 24.0

BING Y EB + SS + BING 17.6
BING Y EB + SS 15.0
BING Y BING 9.4
BING N EB + SS + BING 15.3

bottom-up methods like Selective Search or Edge-Boxes to
extract region proposals. The framework is not an end-to-
end solution and region proposal methods are currently the
speed bottleneck in the framework, especially for our Fast R-
CNN implementation with Edge-Boxes. In contrast, the end-
to-end object detection method such as Faster R-CNN [26]
is able to achieve higher speed compared with Fast R-CNN
by nearly cost-free region proposals. We believe the end-to-
end model will attract more attention in the future and the
search for small but efficient models will never cease. The
recent exploration in Neural Network architecture [37] also
enables high-accuracy detection with low computational
cost.

Finally, we used embedded CPU+GPU platform for the
ease-of-development, while FPGA [36] and ASIC [38], [39]
had been demonstrated to be more energy efficient than
CPU and GPU. A more energy efficient detection solution
is expected to realize better low power image recognition
systems.
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