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VI. EXPERIMENTAL EVALUATION

In this section, we implement and evaluate our SSE schemes
using a large representative dataset. We first summarize in
Table I the differences between our schemes and other notable
searchable encryption schemes in the literature. Our BEIS
schemes can execute multi-keyword boolean search while
achieving forward privacy, a strong privacy guarantee that the
server cannot learn whether or not a newly added file contains
a keyword we searched for in the past. In addition, the search
tokens/keyword hashes of all keywords in the new file are
not leaked. In BEIS-II, we can trade-off the time efficiency
of file additions for forward privacy. As shown in Fig. 6, our
experiments show that if forward privacy is not required, much
more efficient file additions are obtained. As for file deletions,
both BEIS-I and BEIS-II do not leak additional information.

The following experiments are implemented in Java 7.
Either the operations by the server, or operations performed by
the client, were executed on an Intel Core i5-4440M 2:80GHz
CPU with 12GB RAM running on Windows 8. To minimize
the I/O access time, we randomly generate #d #w -bit f0,1g
vectors to simulate the database in the main memory during the
experiments. As #d denotes the number of data files (vectors)
in the database, the i-th bit of the vector accounts for keyword
wi (i 2 f1; : : : ; #w g). Specifically, if the bit at position i of
a vector is 1, it means this file contains the keyword wi. Note
that, all the real-world datasets can be pre-processed to such
format. In our experiment, we choose #d ranging from 213 to
217, and we choose #w ranging from 6000 to 10000. In the
following discussion, we use BEIS-I and BEIS-II to denote
the dynamic BEIS with random generator and the BEIS with
homomorphic generator, respectively.

In the experiments, we set � ’s to be 80-bit random values
to encrypt the index in BEIS-I and Paillier homomorphic
encryption system (with Paillier modulus is 1024bits or 2048
bits) to encrypt the index in BEIS-II, respectively. In addition,
we use the HMAC-SHA1 for PRFs. For simplicity, we omitted
time measurements for encrypting and decrypting the original
data files, since the time costs of such operations are well
studied.

Fig. 4 shows the time costs of index construction process,
which is a one-time cost. In the left figure, we set #w =
8000 while in the right figure, we set #d = 2 15. In BEIS-
I, during the index construction, we use an 80-bit random
number to mask each entry in div’s, which leads to only a
small computation cost, while during the index construction
of BEIS-II, the use of Paillier homomorphic encryption system
to encrypt each div leads to relatively higher computation cost.

Fig. 5 shows the query performance of our BEIS schemes.
Note that, the time cost of query process consists of the
time cost of generating trapdoors (tokens) on the client side
and the time cost of file searching on the server side. Note
that our BEIS schemes can naturally support multi-keyword
search, without needing to post-process all results of single-
keyword queries. In the left figure, we evaluate the single
keyword query performance with the increase of #d. In the
right figure, we evaluate the performance of the multi-keyword
query. Since our solutions have nearly the same computation
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Fig. 4: The average time cost of index construction

cost for disjunction logic and conjunction logic, and thus for
simplicity, we only evaluate the performance of the multi-
keyword query in ‘AND’ logic.

Fig. 6 shows the time costs of addition and deletion oper-
ations over BEIS-I and BEIS-II. Obviously, the costs of file
updates for BEIS-I increase with the number of data files to
be updated, and both addition and deletion operations are very
efficient. However, due to the unique encryptions of the index
in BEIS-II, the time costs of file updates remain invariant.
That implies that our BEIS-II better applies to updates of
a bunch of data files simultaneously. During the process of
file addition, we measure the time costs of BEIS-II with and
without achieving forward privacy respectively. For the latter
case, we do not need to generate m encrypted value for every
bucket. In fact, for each file to be inserted, the client can only
compute a single encrypted value of a 1024-bit vector and
send the 2048-bit ciphertext to the server together with the
position information of the buckets to be changed. We can
greatly reduce the time costs for generating adding token if
forward privacy is not required in practice.
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VII. CONCLUSION

In this paper, we introduced a suite of new and novel
SSE index designs for processing queries over large-scale
encrypted databases. Our index constructions made trade-offs
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Scheme Multi-KW Search Client Index Update Forward Security
Search Time State Info. Size Cost Privacy Strength

RBT-SSE [16] No O(#dw · log#d) No O(#d ·#w) O(#w · log#d) No CKA2
OXT [6] Yes O(#dw) S-terms O(N + #w) - No CKA2

DSSE [17] No O(#dw) No O(N + #w) O(|d|) No CKA2
SP14 [26] No O(#dw · log3N) O-sort O(N) O(|d| · log2N) Yes CKA2
HK14 [12] No O(N) History O(N + #w) O(|d|) No CKA2
Sophos [2] No O(#dw) Counters O(N) O(|d|) Yes CKA2

BEIS-I Yes O(#d) No O(#d ·m) O(m) Yes CKA2
BEIS-II Yes O(#d) No O(#d ·m) O(m) Yes CKA2

TABLE I: An overview of complexities for the state-of-the-art searchable encryption schemes in a single-thread and single-keyword query setting. #dw is the number of data files
that contain the keyword w, #d is the number of data files in the file collection, N is the number of total document-keyword pairs, #w is the number of keywords in the keyword
collection, |d| is the number of unique keywords in data file d, m is the number of buckets, RBT-SSE [16], DSSE [17] and HK14 [12] require one-round query, OXT [6] and
SP14 [26] require multi-round query due to the use of matching protocol and the o-sort operation, respectively. For our schemes, both BEIS-I and BEIS-II require two-round query.

between query efficiency and query privacy, with flexible
and comprehensive query functionalities. Through rigorous
security analysis under strong security model and extensive
experiments on real-world datasets, we demonstrated the ef-
fectiveness and practicality of our constructions.
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