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Abstract—There have been many attempts to classify imbalanced data, since this classification is critical in a wide variety of
applications related to the detection of anomalies, failures, and risks. Many conventional methods, which can be categorized into
sampling, cost-sensitive, or ensemble, include heuristic and task dependent processes. In order to achieve a better classification
performance by formulation without heuristics and task dependence, we propose confusion-matrix-based kernel logistic regression
(CM-KLOGR). Its objective function is the harmonic mean of various evaluation criteria derived from a confusion matrix, such criteria
as sensitivity, positive predictive value, and others for negatives. This objective function and its optimization are consistently formulated
on the framework of KLOGR, based on minimum classification error and generalized probabilistic descent (MCE/GPD) learning. Due to
the merits of the harmonic mean, KLOGR, and MCE/GPD, CM-KLOGR improves the multifaceted performances in a well-balanced
way. This paper presents the formulation of CM-KLOGR and its effectiveness through experiments that comparatively evaluated
CM-KLOGR using benchmark imbalanced datasets.

Index Terms —Imbalanced Data, Confusion Matrix, Kernel Logistic Regression, Minimum Classification Error and Generalized
Probabilistic Descent
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1 INTRODUCTION

DATA that consists of two classes, in which the num-
ber and/or proportion of instances extremely differ

between the classes, is called imbalanced data (See Fig. 1).
Typically, one class has a large amount of instances (i.e.,
the majority) and is of less interest and labeled as negative.
The other class has a small amount of instances (i.e., the
minority) and is of more interest and labeled as positive.
We frequently encounter this type of data in real problems
related to anomalies, failures, and risks, such as medical
diagnosis, oil spill detection, and banking fraud monitoring
[1], [2], [3], [4], [5].

However, classifiers which have no mechanism to handle
imbalance often lead to a useless result that rare but serious
cases are ignored, e.g., a 95% accuracy can be easily achieved
by ignoring 5% cancer patients. On the other hand, it is
also problematic to regard many healthy people as cancer
patients, since it results in costs for needless clinical tests
and treatments. Considering these requirements, it is highly
needed, especially in biomedical fields, to make a well-
balanced improvement in all the evaluation criteria derived
from a confusion matrix.

Because of the importance and difficulty of imbalanced
data classification, many attempts have been made to de-
velop imbalanced data classifiers. Conventional methods
are categorized into those based on sampling, misclassifi-
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cation costs, or an ensemble of classifiers, and they share a
similar approach that is aimed at correcting the imbalance
[1], [2], [3], [4], [5]. These methods are specifically devel-
oped to deal with imbalanced data, and achieve a better
performance than other classifiers. However, their approach
has heuristic and task dependent aspects, and hence is less
general.

In order to solve the conventional problems and achieve
high performance, this paper proposes a novel imbalanced
data classifier, which we call confusion-matrix-based kernel
logistic regression (CM-KLOGR). Aiming to well-balancedly
raise the values of all the evaluation criteria derived from
a confusion matrix, CM-KLOGR combines the following
elements into a consistent formulation: the harmonic mean
of evaluation criteria derived from a confusion matrix,
kernel logistic regression (KLOGR) [6], [7], and minimum
classification error and generalized probabilistic descent
(MCE/GPD) learning [8]. For efficient and effective opti-
mization, pretraining based on the discriminative model
approach and retraining based on the discriminant function
approach are introduced [9].

Although one may think that CM-KLOGR is just another
method based on misclassification costs [1], [2], [3], [4], [5], it
is distinct from such cost-sensitive methods. A conventional

Fig. 1. Imbalanced data consisting of the majority, less interesting, and
negative class ◦, and the minority, more interesting, and positive class
•.
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cost-sensitive classifier indirectly increases the values of the
evaluation criteria through an objective function defined by
the costs that were set subjectively or in a trial-and-error
way by a user. In contrast, CM-KLOGR directly increases
these values by embedding the evaluation criteria into its
objective function. Thus, it has an ability to lead to a
well-balanced improvement of these criteria with no user
intervention.

This paper is organized as follows. Section 1 presents
the relevant background and our objective for imbalanced
data classification. Section 2 reviews the conventional im-
balanced data classifiers and discusses their abilities and
limitations. Section 3 provides the concepts and techniques
that are the elements of our CM-KLOGR. Section 4 is de-
voted to the proposal and formulation of CM-KLOGR by
integrating these elements. Section 5 reports Experiment I,
in which the performance of CM-KLOGR was evaluated
by comparison with kernel logistic regression (KLOGR),
support vector machine (SVM), and their sampling versions.
Section 6 reports Experiment II, which evaluated how CM-
KLOGR works in cases that emphasize specific evaluation
criteria. Section 7 concludes the paper.

2 CONVENTIONAL CLASSIFIERS FOR IMBAL -
ANCED DATA

In the light of classification stages, conventional methods are
categorized into preprocessing, special-purpose learning,
postprocessing, and hybrid approaches [5]. Focusing on
elementary techniques to correct the imbalance, they can
be categorized into sampling, cost-sensitive, and ensemble
approaches [1], [2], [3], [4], [5]. Sampling methods [10], [11],
[12], [13], [14], [15], [16], [17] are a kind of preprocessing
rather than classifiers themselves. They attempt to improve
a single classifier by reducing the classification bias in terms
of the bias-variance decomposition [9], [18]; undersampling,
oversampling, or strategic sampling are used to compensate
for imbalanced data.

In order to equalize the number or proportion of in-
stances between the majority and minority classes, under-
sampling deletes the part of the training data that belongs to
the majority class, and oversampling duplicates the part of
the training data that belongs to the minority class. Strategic
sampling is an advanced version of undersampling and
oversampling. It estimates the distance and/or distribution
of data, and then this information is used for a strategy
to remove disturbance instances and generate beneficial
virtual instances. It has been reported that undersampling
and oversampling based on simple random selection work
but not very well, and strategic sampling works better when
its strategy is adequate. Distance thresholding or clustering
is essential in the sampling methods, and their settings (such
as the definition of distance, the value of the threshold, and
the number of clusters) are based on heuristics depending
on the applications.

Cost-sensitive methods [12], [15], [19], [20], [21], [22] at-
tempt to reduce the classification bias of a single classifier, as
well as the sampling methods attempt. They try to improve
the classifier by reflecting information about the significance
of the classification results into the objective function. Such
information is represented by separate costs for classifying

an instance into the majority class and for classifying an
instance into the minority class. Specifically, the costs are
put on the numbers of true negatives, false negatives, true
positives, and false negatives. Although the cost-sensitive
methods have an ability to raise the classification perfor-
mance, their success depends on application-specific costs.
It is required to adjust the costs based on user’s subjectivity
or trials and errors, because the objective function is a sum
of the costs (not the evaluation criteria), and the way in
which it improves the classification is indirect.

The idea of ensemble methodology has been proposed
for classification in general [9], [18]. We explain the general
ensemble methods here, because the ensemble methods
specific to imbalanced data classification [13], [14], [16], [21],
[23], [24], [25] have the same characteristics as the general
ensemble methods. The ensemble methods are the way to
combine classifiers, primarily aiming at the reduction of
classification variance in terms of the bias-variance decom-
position. They train a set of base classifiers to complement
each other, and make decisions based on a committee of
these classifiers. They are categorized into bagging, boost-
ing, or stacking [18], [26], [27], [28], [29].

In bagging, training of classifiers is accomplished with
the replacement of bootstrap samples that are randomly
and duplicately selected from training data. The objective
function is defined by the majority vote of the classifiers. An
effective example of bagging is random forest that includes
variable sampling and consists of decision trees. Unlike bag-
ging, boosting evolves the committee process by weighting.
It assigns a weight for each classifier to each sample, updates
these weights according to the loss of misclassification, and
makes a decision by weighted majority voting. Stacking it-
eratively trains the classifiers and their weights in a manner
of cross-validation, and its decision making is based on a
weighted majority vote.

The ensemble methods for imbalanced data classification
share the benefits of the original ensemble methods, in that
the classification variance is low, and the theoretical back-
ground has been established [9], [18]. These benefits make
the methods promising, but there exists a serious issue,
namely, how to define an objective function that is suitable
for imbalanced data. Conventional ensemble methods use
an objective function of sampling or cost-sensitive methods,
and inevitably suffer from the same problems from which
these methods suffer.

3 CONCEPTUAL AND TECHNICAL ELEMENTS

FOR OUR CLASSIFIER

3.1 Kernel Logistic Regression (KLOGR)

CM-KLOGR extends and combines the concepts and tech-
niques of KLOGR, MCE/GPD, and F-Measure. KLOGR [6],
[7] is the kernelized version of logistic regression (LOGR)
[9], [18] that is based on the discriminative model approach
and a common classifier in biomedical fields. LOGR pro-
vides both the predicted class and its estimated posterior
probability, which is important as a confidence measure in
such fields [30], [31]. KLOGR inherits this advantage and
also overcomes the disadvantage that LOGR cannot achieve
high performance due to its linearity; KLOGR does this by
the kernelization which generates nonlinear boundaries. In
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a previous study [32], KLOGR was applied to an imbal-
anced biomedical dataset, and superior to the one-nearest
neighbor method, multivariate linear regression, LOGR,
regularized LOGR, and SVM. Other biomedical studies also
applied KLOGR and showed its effectiveness [33], [34], [35],
[36]. Because of those, we focus on KLOGR.

The source for estimating the posterior probabilities of
classes in KLOGR, yk(x;αk, bk) (for simplicity, denoted as
yk(x)), is shown in Eq. (1). This is defined as a weighted
sum of the kernels for the k-th class, parameterized by the
parameter vector αk = [α1k, α2k, · · · , αNk]

T and the bias
term bk. x is the feature vector to be classified, and xm is
the feature vector of the m-th instance in the training data.
K(x,xm) is the kernel function that represents the similarity
between x and xm, and κ(x) is a vector containingK(x,xm)
for m = 1 to N . The most frequently used function is
the Gaussian kernel K(x,xm) = exp(−||x − xm||2/2σ2),
in which σ is a hyperparameter.

yk(x) =
N∑

m=1

αmkK(x,xm) + bk = αT
k κ(x) + bk (1)

Using yk(x), the k-th class posterior probability Pr(Ck|x)
is defined as Eq. (2) in the form of a softmax function, where
K is the number of classes.

Pr(Ck|x) =
exp(yk(x))

K∑
l=1

exp(yl(x))

(2)

The objective function, J(α1,α2, · · · ,αK), is the cross-
entropy error function with a regularization term shown
in Eq. (3). This function indicates how well the posterior
probabilities of classes are estimated under the L2-norm
constraint. There are some choices on how to set bk: aug-
menting x to embed bk into the vector αk (bk is one of the
variables in the objective function), and adjusting bk outside
of training (bk is fixed to 0 when training). The second
choice, which is comparatively common for the application
of LOGR to biomedical data, is selected in the present study.
Hence, Eq. (3) is a function of αk only.

J(α1,α2, · · · ,αK) = (3)

−
N∑

n=1

K∑
k=1

δkn,k ln Pr(Ck|xn) +
λ

2

K∑
k=1

αT
kKαk

where the Kronecker delta function δkn,k counts one
when k is identical to the correct class kn of the n-th
instance, namely a correct classification. The weight λ repre-
sents how much emphasis is put on the regularization term,
and it is a hyperparameter. K denotes the Kernel matrix
in which the elements are the values of the kernel function
K(x,x′), as calculated for all combinations of instances x
and x′ in the training data.

Although the original KLOGR does not have a regular-
ization term, it is recommended to use one, since restricting
the search range in a parameter space leads to a more stable
performance with a smaller classification variance [9], [18].
Any types of norms such as the L1, L2, or higher order ones
are acceptable for regularization. The L2-norm is a reason-
able choice, since it ensures a clear theoretical relationship
between KLOGR and both SVM and the Gaussian process
classification (GPC) [9], [18].

The objective function of SVM [37], [38] consists of two
terms: an empirical hinge loss to penalize incorrect classi-
fication and a geometric margin to ensure generalization.
Maximizing the geometric margin of SVM is identical to
minimizing the L2-norm of the parameters except the bias
term, in a two-class classification. This suggests that the L2-
norm regularization of KLOGR maximizes the geometric
margin, as in SVM. In terms of GPC [9], KLOGR with L2-
norm regularization is the simplest implementation of GPC.

With regard to the parameters αmk, J(α1,α2, · · · ,αK)
is convex, and hence the unique optimal point in the pa-
rameter space is reachable by the gradient descent method.
In contrast, the hyperparameters, which are the width of
the Gaussian kernel σ and the weight on the regularization
term λ, must be set before training. Depending on the
formulation, the bias term of the regression function bk in
Eq. (1) may also need to be set after training. It is common
for classifiers, including KLOGR, to set the hyperparameters
(and the bias term, if one is needed) by performing a grid
search using validation dataset [39]. In KLOGR, after set-
ting the parameters and hyperparameters, the classification
decision is made by selecting the class with the highest
estimated probability.

KLOGR is an effective classifier that can draw nonlin-
ear boundaries and provides the posterior probabilities of
classes as a confidence, of which effectiveness was shown in
the literatures [32], [33], [34], [35], [36]. Hence, it is expected
that KLOGR achieves higher performance by introducing a
new objective function, which is specific to imbalanced data.

3.2 Minimum Classification Error and Generalized
Probabilistic Descend (MCE/GPD)

MCE/GPD [8] is a learning method based on the discrimi-
nant function approach [9], which directly controls the class
boundaries, unlike the approaches based on distribution
estimation. It has been successfully applied to speech recog-
nition, and intensively extended and improved [8], [40],
[41], [42]. In MCE/GPD, the discriminant function yk(x;Λk)
abbreviated as yk(x) is defined in Eq. (4).

yk(x) = f(Λk,x) (4)

where Λk denotes a set of parameters for the k-th class.
Any differential positive functions of Λk are acceptable as
f(Λk,x). For instance, the simplest function can be yk(x) =
wT

k x+ bk, where wk and bk denote the parameter vector of
input variables and the bias term, respectively.

The misclassification measure dkn is defined in Eq. (5).

dkn(xn) = −ykn(xn) +

 1

K − 1

∑
j, j ̸=kn

yj(xn)
η

 1
η

(5)

≈ −ykn(xn) + max
j, j ̸=kn

yj(xn) (if η →∞)

where η is a positive constant for a parametric maximum
selection operation, and kn represents the correct class of
the n-th instance. yj(xn) estimates the degree of belonging
of the n-th instance to the j-th class. ykn(xn) has a similar
meaning but is specific to the case in which the correct class
of xn is the k-th class. The negative and positive values of
dkn mean correct and incorrect classifications, respectively;
dkn represents the signed degree of classification correctness
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(less than 0) or incorrectness (more than 0). It is essential for
Eq. (5) that yk(xn) be positive, and thus if necessary, yk(xn)
must be normalized to be positive by such as logarithmic
and/or exponential transformations [8].

The function defined in Eq. (6) is a differentiable
smoothed 0-1 loss function that penalizes misclassification
in the form of a sigmoid function. The hyperparameter ϵ > 0
determines the smoothness, that is, how close the function
is to a 0-1 step function. The large and small values of ϵ
tend to cause overfitting and underfitting, respectively, and
thus its value should be properly set. The objective function
J(Λ1,Λ2, · · · ,ΛK) is then formulated as the sum of the loss
over the N instances of training data, as shown in Eq. (7).
This objective function makes MCE/GPD directly pursue a
reduction in misclassifications, and makes it possible to use
the gradient descent method for optimization.

l(dkn(xn)) =
1

1 + exp(−ϵdkn(xn))
(6)

J(Λ1,Λ2, · · · ,ΛK) =
1

N

N∑
n=1

l(dkn(xn)) (7)

MCE/GPD takes a straightforward route to the correct
classification, and it has the capacity to express any eval-
uation criteria that are based on the smoothed 0-1 loss
function. It is expected to achieve better performance by
formulating an objective function and its learning process,
which is based on MCE/GPD and specific to imbalanced
data classification. However, if we do so for CM-KLOGR,
such an objective function is not convex, and that causes
difficulties with parameter optimization. In contrast, the
objective function of KLOGR is convex and leads to smooth
parameter optimization, similar to that of SVM. Taking
these aspects into account, it is worthwhile to bring out the
potentials of MCE/GPD and KLOGR in imbalanced data
classification by their combination.

Generally, classification is categorized into the gener-
ative model, the discriminative model, and the discrimi-
nant function approaches [9]. For parameter optimization
when the objective function is nonconvex, it is common to
combine pretraining based on the generative/discriminative
model approach and retraining based on the discriminant
function approach, e.g., fine-tuning after clustering [8], fine-
tuning after distribution estimation [43], etc. This suggests a
way to unlock the potentials of MCE/GPD and KLOGR.

3.3 Evaluation Criteria for Classification Performance

Multifaceted evaluation criteria are required for the evalu-
ation of the performance of imbalanced data classification.
Such criteria that can be derived from a confusion matrix
include sensitivity (Sens), specificity (Spec), positive pre-
dictive value (PPV), negative predictive value (NPV), and
accuracy (Acc) [5], [44], [45], [46]. Sens, Spec, and PPV are
known as true positive rate (TPR) or recall, true negative
rate (TNR), and precision, respectively. Another commonly
used criterion is the area under the curve of the receiver op-
erating characteristic (AUC), which accumulates the points
of two criteria, such as Sens and Spec, over their different
parameter settings. Therefore, AUC cannot be used when
evaluating the performance under an optimal parameter set-
ting. Sens, Spec, PPV, NPV, and Acc are defined in Eqs. (8) to

(12), respectively, where N is the total number of instances,
NTP is the number of true positives, NTN is the number of
true negatives,NFP is the number of false positives, andNFN
is the number of false negatives [5], [44], [45].

Sens =
NTP

NTP +NFN
(8)

Spec =
NTN

NTN +NFP
(9)

PPV =
NTP

NTP +NFP
(10)

NPV =
NTN

NTN +NFN
(11)

Acc =
NTP +NTN

N
(12)

A classifier with no adjustment for imbalanced data
tends to assign all the instances to the majority (negative)
class. In that case, Spec, NPV, and Acc are all large, and that
makes the classification appear to be successful. However,
it is actually a failure as indicated by the low values of
Sens and PPV; the classifier overlooks the instances in the
minority (positive) class of more interest, as if they are not
interesting. Figuratively speaking, sick people are ignored
and not treated. Let us consider another extreme case in
which a classifier tends to assign all the instances to the
minority (positive) class, due to too much imbalance correc-
tion. It achieves high Sens, but does not necessarily increase
PPV and results in low Spec, NPV, and Acc; the classifier
picks up the instances in the majority (negative) class of less
interest, as if they are interesting. Healthy people are given
needless treatment, and this causes the waste of medical
expense.

These cases show the necessity of a well-balanced im-
provement to these criteria, leading to the combinational
use of these criteria for training. Especially, domains such
as biomedicine are supposed to evaluate the classification
performance using not only Sens and PPV, but also Spec
and NPV (and occasionally Acc). In fact, the combination of
the words, sensitivity, specificity, positive predictive value,
and negative predictive value, received more than 16000
hits on PubMed [47], which is one of the most widely used
databases of biomedical literature.

When using multiple evaluation criteria, it is difficult to
evaluate their balance and total performance. This difficulty
is common in information retrieval as in imbalanced data
classification. For comprehensive evaluation, information
retrieval algorithms use F-measure [48], the harmonic mean
of Sens and PPV, namely recall and precision. The intent
is to balance them in a way that is more sensitive to
the difference in their values than the arithmetic mean. F-
measure suggests how to synthesize and utilize evaluation
criteria for imbalanced data.

4 PROPOSAL OF CONFUSION-MATRIX-BASED

KERNEL LOGISTIC REGRESSION (CM-KLOGR)
4.1 Ideas Behind CM-KLOGR

We propose a novel classifier: a confusion-matrix-based
kernel logistic regression (CM-KLOGR) [49]. Its main idea
is to directly improve various evaluation criteria, while bal-
ancing them each other, by the formulation of a consistent
learning mechanism based on F-measure [48], KLOGR [6],
[7], and MCE/GPD [8]. In this section, the detailed ideas are
discussed in order of the model structure, objective function,
and optimization of CM-KLOGR.
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TABLE 1
List of symbols used for the formulation of CM-KLOGR.

K: number of classes.
N : number of instances in the training data.
x: feature vector.
xm: feature vector of the m-th instance in the training data.
C: class.
Ck : k-th class, where k ∈ {1, · · · ,K}. In two-class classification,
C1 corresponds to the negative class and C2 to the positive.

K(x,xm): kernel function that represents the similarity between
x and xm.

κ(x): vector consisting of the kernel functions;
[K(x,x1),K(x,x2), · · · K(x,xN )]T .
K: Kernel matrix consisting of the kernel function vectors;

[κ(x1),κ(x2), · · ·κ(xN )].
α: parameter vector of weights for the similarities of an instance

to the others in the training data; [α1, α2, · · · , αN ]T .
αk : parameter vector for the k-th class.
b: bias term which is a scalar.
bk : bias term for the k-th class.
yk(x): a kernel regression function for the k-th class, of which

parameters are αk and bk .
Pr(Ck|x): posterior probability of the k-th class when x is input.
kn: variable to indicate the correct class of the n-th instance.
Pr(Ckn |xn): posterior probability of the correct class indicated

by kn, i.e., Ckn when xn is input.
dkn (xn): misclassification measure when classifying the n-th

instance of which correct class is Ckn .
η: positive constant to parametrically formulate maximum

selection.
l(dkn (xn)): smoothed 0-1 loss function that penalizes a

misclassification.
ϵ: positive constant to determine the smoothness of the loss

function.
NTP, NFP, NTN, and NFN: numbers of the true positive, false

positive, true negative, and false negative instances in the
training data.

δl,k : Kronecker delta function of which the value is 1 when
l = k and 0 when l ̸= k.

fi: i-th evaluation criterion.
ξi: numerator of the i-th evaluation criterion function.
ψi: denominator of the i-th evaluation criterion function.
J : objective function used in retraining.
JHM: first term of the objective function which is the harmonic

mean of the evaluation criteria.
JL2: second term of the objective function which is the L2-norm

regularization.
Nec: number of evaluation criteria.
γi: weight on the i-th evaluation criterion.
Sγ : summation of γi over all the i, Sγ =

∑Nec
i=1 γi.

λ: weight that balances the harmonic mean of the evaluation
criteria and the L2-norm regularization.

As the framework on which to develop CM-KLOGR and
its pretraining, KLOGR is selected because of the reasons
below. It has the ability to draw flexible nonlinear class
boundaries by kernelization; to converge to the optimal
point in the parameter space, due to the convexity of the
objective function; and to derive the posterior probabilities
of the classes, which can be used as a confidence measure.
Compared to classifiers based on the generative model
approach [9] that also provide the probabilities, KLOGR
has fewer parameters and is expected to work well even
if the training data is small. It actually worked well for
imbalanced biomedical datasets [32], [33], [34], [35], [36].

The key point of CM-KLOGR is to introduce a new
objective function. This function can be defined based on
the idea of F-measure (Precisely speaking, based on the
harmonic mean which is a more general concept than F-
measure). The harmonic mean is sensitive to the difference

between its components, and consequently balances them.
It is thus reasonable to define the objective function of
CM-KLOGR as the harmonic mean of various evaluation
criteria. Combining various evaluation criteria may seem
redundant, because of their trade-off. This is theoretically
true if the classifier is perfectly optimized. In such a case,
increasing some criteria causes a decrease in the others.
However, on the way to the optimal setting, there is room
to simultaneously increase various evaluation criteria.

MCE/GPD shows the way to the formulation and opti-
mization of the new objective function. It has the ability to
formulate the evaluation criteria derived from a confusion
matrix in conjunction with a smoothed 0-1 loss function;
to straightforwardly improve these evaluation criteria; and
to make the gradient descent method applicable. For CM-
KLOGR, it is promising to formulate the evaluation criteria
and their harmonic mean, and optimize it via MCE/GPD.

There is a problem to overcome, the difficulty in opti-
mization because of the nonconvexity of this objective func-
tion. Therefore, a two-stage training is adopted, which con-
sists of pretraining based on the generative/discriminative
model approach and retraining based on the discrimi-
nant function approach. In CM-KLOGR, the parameters
of KLOGR are initialized using the cross-entropy error
function in pretraining, and fine-tuned using the harmonic
mean in retraining. Additionally, the L2-norm regulariza-
tion, which works as geometric margin maximization, is
introduced to these two objective functions. It is expected
that CM-KLOGR will lead to smooth optimization and
generalization due to the two-stage training and the reg-
ularization.

Note that a classifier proposed in the literature [50]
has some similarities to CM-KLOGR with respect to a
discriminant function approach. However, it differs from
CM-KLOGR in that it was not intended for the classification
of imbalanced data, its framework was logistic regression
with no kernelization, it embedded only F-measure, and
optimization difficulties due to nonconvexity were left unre-
solved. CM-KLOGR overcomes these remaining problems.

4.2 Formulation of CM-KLOGR

This section defines and formulates the model structure,
objective function, and optimization of CM-KLOGR. Table
1 lists the symbols used for that. The formulation of CM-
KLOGR starts from that of KLOGR generally defined for
multi-class classification, and is specialized for two-class
imbalanced data classification. As in KLOGR (see Eqs.(1)
and (2)), CM-KLOGR has the model structure to estimate
the posterior probabilities of the classes by substituting the
regression function of the kernels in Eq. (13) into the softmax
function in Eq. (14).

yk(x) =
N∑

m=1

αmkK(x,xm) + bk = αT
k κ(x) + bk (13)

Pr(Ck|x) =
exp(yk(x))

K∑
l=1

exp(yl(x))

(14)

For pretraining and retraining, two objective functions
and their respective optimization processes are formulated.
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In the pretraining process, the objective function is the cross-
entropy error function, and the optimization process is the
gradient descent method; these are identical to those used in
KLOGR. The parameter setting accomplished by pretraining
is passed into retraining as an initialization status, and it is
then fine-tuned by the gradient descent method, using the
new objective function, as developed in the following steps.

We begin by associating the class posterior probabilities
of KLOGR with the misclassification measure of MCE/GPD.
Here, Pr(Ck|x) in Eq. (14), which is the posterior probability
of the k-th class given x, is regarded as the discriminant
function of this class. By substituting it into Eq. (5), the
misclassification measure dkn of Eq. (15) is obtained.

dkn(xn) (15)

= −Pr(Ckn |xn) +

 1

K − 1

∑
j, j ̸=kn

Pr(Cj |xn)
η

 1
η

≈ −Pr(Ckn |xn) + max
j, j ̸=kn

Pr(Cj |xn) (if η →∞)

The smoothed 0-1 loss function in Eq. (16) penalizes
misclassifications based on the sign and absolute value of
the misclassification measure dkn(xn).

l(dkn(xn)) =
1

1 + exp(−ϵdkn(xn))
(ϵ > 0) (16)

By treating this loss as an approximate count of mis-
classifications, the numbers of true positives, false positives,
true negatives, and false negatives are defined as shown in
Eqs. (17) to (20), respectively. These numbers are specific
to two-class classification, and hence, we set kn = 1 for
the negative class C1 and kn = 2 for the positive class
C2. In Eq. (17), l(dkn(xn)) represents the count of incorrect
classifications, and accordingly, 1−l(dkn(xn)) represents the
count of correct classifications. δkn,2, which is multiplied to
1− l(dkn(xn)), picks up a case when the correct class is C2.
Eq. (17), the summation of the multiplication of these terms,
therefore represents the number of true positives. Similar
interpretations apply to Eqs. (18) to (20).

NTP ≈
N∑

n=1

(1− l(dkn(xn)))δkn,2 (17)

NFP ≈
N∑

n=1

l(dkn(xn))δkn,1 (18)

NTN ≈
N∑

n=1

(1− l(dkn
(xn)))δkn,1 (19)

NFN ≈
N∑

n=1

l(dkn(xn))δkn,2 (20)

Substituting NTP, NFP, NTN, and NFN into Eqs. (8) to (12),
the evaluation criteria Sens, Spec, PPV, NPV, and Acc are
defined as shown in Eqs. (21) to (25), respectively.

f1 = Sens =
NTP

NTP +NFN
= ξ1ψ

−1
1 (21)

f2 = Spec =
NTN

NTN +NFP
= ξ2ψ

−1
2 (22)

f3 = PPV =
NTP

NTP +NFP
= ξ3ψ

−1
3 (23)

f4 = NPV =
NTN

NTN +NFN
= ξ4ψ

−1
4 (24)

f5 = Acc =
NTP +NTN

N
= ξ5ψ

−1
5 (25)

where ξi and ψi denote the upper and lower terms of
each fraction, respectively. They are introduced to simplify
the result of objective function differentiation.

HM, the weighted harmonic mean of the evaluation
criteria (Sens, Spec, PPV, NPV, and Acc), is defined as in Eq.
(26), where Sγ is the summation of all the weights as shown
in Table 1. This HM is able to represent any combinations
of these criteria by assigning proper weights on them.
Note that it can be used not only for training (parameter
setting), but also for validating (hyperparameter and cutoff
setting) and testing (generalized performance evaluation).
The default setting of the weight γi is to assign 1 for all i
(or for all except i = 5 corresponding to Acc). However, to
meet the needs of applications, γi can be determined by the
importance of the i-th evaluation criterion. Actually, γi is set
differently in the evaluation experiments.

HM =
1

Sγ

[(
Nec∑
i=1

γi
fi

)]−1

(26)

The objective function of CM-KLOGR for retraining
J(α1,α2, · · · ,αK), simplified as J , is defined as in Eq.
(27). Its first term JHM is the weighted harmonic mean of
the evaluation criteria, which is defined in Eq. (26). For
indicating that HM is used in training, we replaced the
symbol HM with JHM. The second term JL2 of the objective
function is the L2-norm regularization.

J = JHM + JL2 (27)

= −
[
1

Sγ

(
Nec∑
i=1

γi
fi

)]−1

+
λ

2

K∑
k=1

αT
kKαk

Starting from a favorable initial setting obtained by
pretraining using Eq. (3), the parameters αk are fine-tuned
by retraining using Eq. (27). In retraining, the first term of
Eq. (27) will improve all the evaluation criteria in a well-
balanced way, and the second one will avoid overfitting.

For the optimization by the gradient descent method,
the objective function J is differentiated with regard to αk′ ,
where k′ indicates each class, C1 or C2. The differentiation
∂J

∂αk′
is divided into two terms in Eq. (28). The second term

∂JL2
∂αk′

can be directly calculated. It is necessary to decompose
the first term ∂JHM

∂αk′
by applying the chain rule. The first part

of the decomposition result ∂JHM
∂fi

can be directly calculated.
The second part ∂fi

∂αk′
requires a further application of the

chain rule, which traces back from fi to αk′ through ξi, ψi,
l(dkn(xn)), dkn(xn), Pr(Ck|x), and yk(x).

∂J

∂αk′
=

∂JHM

∂αk′
+
∂JL2

∂αk′
(28)

=
Nec∑
i=1

∂JHM

∂fi

∂fi
∂αk′

+ λKαk′

The final result of differentiation ∂J
∂αk′

is shown as Eq.
(29) in the next page. The values of the parameters are
updated in each epoch of the retraining, following the rule
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∂J

∂αk′
= −2Sγ

γ1
(f1)2

[
Nec∑
h=1

γh
fh

]−2 N∑
n=1

[
ψ−1
1 (−δkn,2)− ξ1ψ−2

1 × (0)
]

(29)

×ϵl(dkn(xn))(1− l(dkn(xn)))(−1)δk′,kn Pr(Ckn |xn)(1− Pr(Ckn |xn))κ(xn)

−2Sγ
γ2

(f2)2

[
Nec∑
h=1

γh
fh

]−2 N∑
n=1

[
ψ−1
2 (−δkn,1)− ξ2ψ−2

2 × (0)
]

×ϵl(dkn(xn))(1− l(dkn(xn)))(−1)δk′,kn Pr(Ckn |xn)(1− Pr(Ckn |xn))κ(xn)

−2Sγ
γ3

(f3)2

[
Nec∑
h=1

γh
fh

]−2 N∑
n=1

[
ψ−1
3 (−δkn,2)− ξ3ψ−2

3 (−δkn,2 + δkn,1)
]

×ϵl(dkn(xn))(1− l(dkn(xn)))(−1)δk′,kn Pr(Ckn |xn)(1− Pr(Ckn |xn))κ(xn)

−2Sγ
γ4

(f4)2

[
Nec∑
h=1

γh
fh

]−2 N∑
n=1

[
ψ−1
4 (−δkn,1)− ξ4ψ−2

4 (−δkn,1 + δkn,2)
]

×ϵl(dkn(xn))(1− l(dkn(xn)))(−1)δk′,kn Pr(Ckn |xn)(1− Pr(Ckn |xn))κ(xn)

−2Sγ
γ5

(f5)2

[
Nec∑
h=1

γh
fh

]−2 N∑
n=1

[
ψ−1
5 (−δkn,2 − δkn,1)− ξ5ψ−2

5 × (0)
]

×ϵl(dkn(xn))(1− l(dkn(xn)))(−1)δk′,kn Pr(Ckn |xn)(1− Pr(Ckn |xn))κ(xn)

+λKαk′

defined in Eq. (30), where the learning rate ρ is a positive
constant. The values of α1 and α2 are obtained for the
negative and the positive classes, respectively.

αk ← αk − ρ
∂J

∂αk′
|αk′=αk

(30)

As is common in classifiers, including SVM, KLOGR,
and CM-KLOGR, the bias term bk has a considerable effect
on the performance; this is especially true in the classifi-
cation of imbalanced data. For SVM, it is not possible to
set bk in a dual space defined by kernelization. Instead,
there is a way to do so in an original space using the
values of αmkK(x,xm) [38]. In the methods based on LOGR
including KLOGR, bk is frequently called cutoff and treated
as a separate parameter to set after training. bk in CM-
KLOGR is handled in the same manner.

4.3 Setting of Hyperparameters and Cutoff

In general, classifiers have two kinds of variables to set,
hyperparameters and parameters, and if shifting is needed,
a bias term (it can be a part of parameters, depending how
to handle it). In contrast to that parameter setting is often
discussed in details, hyperparameter and bias term settings
are not so. It is difficult in nature to set hyperparameters in
a fully systematic way; Hyperparameter setting inevitably
includes trial-and-error procedures. However, considering
its effect on performance, which may be strong when data is
imbalanced, it is worth discussing how to design the setting
of hyperparameters. Bias term setting affects classification
performance, has widely different two approaches, and
should be discussed, too.

It is common for classifiers to set the hyperparameters by
performing a grid search using validation data that differs
from the training data. In CM-KLOGR, the hyperparameters
are the width of the Gaussian kernel σ, the weight on
the regularization term λ, and the smoothness of the loss
function ϵ, and they are set outside of training by this
common way.

Regarding the setting of the bias term bk, as mentioned
briefly in Section 3.1, there are two alternatives according
to whether bk is included or not in the objective function.
The first method embeds bk as α0 into the objective function
by augmenting the Kernel matrix K using a dummy kernel,
and it optimizes bk during training [51], [52], [53]. The sec-
ond method fixes bk = 0 during training, and it optimizes
bk after training [6], [7], [51], [54]. In the biomedical field, the
bias term is often called cutoff, and it is set using the second
method. To be precise, the bias term and the cutoff have
differences in their roles and optimization. For this reason,
in the present study they are differentiated as follows: The
bias term is the intercept of an objective function, and it is
set in training; the cutoff is the threshold of the discriminant
functions, and it is set after training.

The second method is selected for CM-KLOGR, and it
makes the objective function of CM-KLOGR similar to that
of SVM. Besides being used for setting the hyperparameters,
a grid search with validation data is used to set the cutoff.
The classification decision is made by the rule that includes
the cutoff in Eq. (31).

C(x) =

{
C1, iff g2(x)− g1(x) ≤ cutoff
C2, iff g2(x)− g1(x) > cutoff

(31)
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where Ck, k ∈ {1, 2} is a class (1 and 2 mean negative
and positive, respectively), gk(x) = Pr(Ck|x) is the esti-
mated posterior probability, and cutoff denotes the cutoff.

In order to accurately estimate classification perfor-
mance, it is as important as the processes of hyperparameter,
parameter, and cutoff setting, how to divide and feed a
dataset into these processes, especially when data is imbal-
anced. The dividing and feeding should be designed not to
change the nature of the imbalanced data. It is the part of
designing experiments and discussed in Section 5.2.

5 EXPERIMENT I: EVALUATION UNDER SAME

WEIGHTS ON EVALUATION CRITERIA

5.1 Purpose and Conditions

CM-KLOGR was empirically evaluated by comparing its
performance with those of competitive classifiers on several
datasets. Experiment I assumed the strictest case in which
both positives and negatives must be exhaustively and
correctly classified, such as medical diagnosis with minimal
errors. Therefore the HM of Sens, Spec, PPV, and NPV was
used for training CM-KLOGR, validating all the classifiers,
and testing them. Note that Acc was excluded due to its
redundancy; the weights γi were set to 1 for Sens, Spec,
PPV, and NPV, and to 0 for Acc.

KLOGR, SVM, and these methods combined with un-
dersampling and oversampling were selected as competi-
tors, in consideration of the following. What distinguishes
CM-KLOGR is its comprehensive objective function, the
harmonic mean of evaluation criteria, and its consistent
learning process with no user intervention. Examining the
effect of these aspects is the focal point, and we should
avoid mixing the effect of difference in model structure into
this examination. KLOGR is the basis of CM-KLOGR. It
shares the same model structure with CM-KLOGR, and its
objective function is that in the pretraining of CM-KLOGR.
Therefore, it can be the baseline of performance. SVM is the
most common kernel method, and it has a similar model
structure to that of CM-KLOGR, except its hinge-loss-based
objective function. Thus, KLOGR and SVM were selected.

Sampling methods, which are a preprocessing tech-
niques rather than classifiers, were also used. We selected
and combined the simple sampling methods (undersam-
pling and oversampling) with KLOGR and SVM to com-
pare to CM-KLOGR. Strategic sampling was not adopted,
because, from the standpoint to clarify the effect of the
objective function of CM-KLOGR, it will be out of focus
to compare this effect and the effect of specific strategies
in preprocessing. By the comparison of CM-KLOGR to the

TABLE 2
Specifications of benchmark datasets. Maj. and Min. denote the

majority and minority classes, respectively.

Name of Number of Size Ratio
Datasets Features Maj., Min. (Total) Maj./Min.
Breast 10 458, 241 (699) 1.90
Haberman 3 225, 81 (306) 2.78
Ecoli-pp 7 284, 52 (336) 5.46
Ecoli-imu 7 301, 35 (336) 8.60
Pop failures 18 494, 46 (540) 10.74
Yeast-1 vs 7 7 429, 30 (459) 14.30

simple sampling methods, not only its effectiveness but also
a perspective on the use of sampling for CM-KLOGR were
examined.

The reasons why cost-sensitive and ensemble methods
were not used is as below: As far as we know, many
cost-sensitive methods require heuristic and task dependent
processes, while CM-KLOGR does not. The present experi-
ments did not aim to examine the effect of such processes,
but to clarify the fundamental effectiveness of CM-KLOGR
brought by its objective function. Ensemble methods are
the way to combine classifiers, and hence they are not
competitive to CM-KLOGR which is a single classifier. Note
that we understand the importance of cost-sensitive and
ensemble methods and also the necessity to compare and/or
combine them with CM-KLOGR. After confirming the fun-
damental effectiveness of CM-KLOGR, such comparisons
and/or combinations should be considered in the next stage
of our study.

Regarding the other experimental conditions, the Gaus-
sian kernel was used in common for the classifiers. For
KLOGR and SVM combined with the sampling methods,
to make the numbers of negatives and positives equal, the
number of negatives was reduced by undersampling and
that of positives was increased by oversampling. The imbal-
anced datasets summarized in Table 2 were used, that have
different proportions of majority and minority (or negative
and positive) instances [55], [56]. Prior to kernelization,
features were normalized to be dimensionless with mean
of 0 and standard deviation of 1 and then were augmented,
in the original input variable space. This normalization is
effective for hyperparameter and parameter settings, since it
makes the search ranges close to each other among different
datasets.

5.2 Evaluation Process Design

It is difficult to precisely evaluate the classification perfor-
mance for imbalanced data, especially when the data is
small. Because of the imbalance and the small number of
instances, the distribution of instances often differs between
the training, validation, and test sets. The difference in
distribution makes performance evaluation imprecise, and
consequently, it sometimes leads to improper setting. For
this solution and the fair comparison of the classifiers,
the following processes were designed to divide and feed
datasets, to set the hyperparameters, parameters, and cutoff,
and to estimate the performance.

TABLE 3
Search conditions for hyperparameter and cutoff setting. In SVM, c is a

box constraint which has a similar role to λ.

Classifiers Hyperparameters and Cutoff
CM-KLOGR σ: 0.1 to 5.0 with a step of 0.1

λ: 0.1 to 5.0 with a step of 0.1
ϵ: 1, 5, 10, 20, 40, and 80

cutoff: -1.0 to 1.0 with a step of 0.01
KLOGR σ: 0.1 to 5.0 with a step of 0.1

λ: 0.1 to 5.0 with a step of 0.1
cutoff: -1.0 to 1.0 with a step of 0.01

SVM σ: 0.1 to 5.0 with a step of 0.1
c: 0.1 to 5.0 with a step of 0.1

cutoff: -1.0 to 1.0 with a step of 0.01
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TABLE 4
Experiment I: Performance 1 for CM-KLOGR, KLOGR, and SVM,
where HM is the harmonic mean of Sens, Spec, PPV, and NPV.

Breast
Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 95.83 95.65 92.00 97.78 95.27
KLOGR 100.00 95.65 92.31 100.00 96.88
SVM 100.00 93.48 88.89 100.00 95.36
Haberman

Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 75.00 82.61 60.00 90.48 75.25
KLOGR 62.50 78.26 50.00 85.71 66.18
SVM 37.50 86.96 50.00 80.00 56.60
Ecoli-pp

Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 93.10 71.43 100.00 89.40
KLOGR 100.00 93.10 71.43 100.00 89.40
SVM 100.00 86.21 55.56 100.00 80.64
Ecoli-imu

Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 50.00 96.67 66.67 93.55 71.38
KLOGR 50.00 96.67 66.67 93.55 71.38
SVM 50.00 93.33 50.00 93.33 65.12
Pop failures

Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 95.92 71.43 100.00 90.04
KLOGR 80.00 97.96 80.00 97.96 88.07
SVM 80.00 95.92 66.67 97.92 83.09
Yeast-1 vs 7

Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 88.37 37.50 100.00 68.99
KLOGR 100.00 81.40 27.27 100.00 58.01
SVM 66.67 93.02 40.00 97.56 65.57

T% of the instances in a dataset are set aside for testing,
and the remaining (100−T )% of them are split into S subsets
for training and validating by the S-hold cross-validation
[9], [18]. In our experiments, T = 10 and S = 10. The S-hold
cross-validation is applied for each of the hyperparameter
and cutoff settings, through Steps 1, 2, and 3.

In Step 1 to set the hyperparameters and the parameters,
a grid search is performed under a fixed cutoff at 0. The
S-fold cross-validation is applied on each cross point on
the grid, that corresponds to each hyperparameter setting.
In each fold, after setting the parameters with a training set
composed of the S−1 subsets, the performance is estimated
with a validation set, that is, the remaining subset. As a
result, the hyperparameters and the parameters are set to
the values that achieved the maximum average performance
over the S folds (this is called “validation performance”). In
Step 2 to set the cutoff, a grid search is performed similarly
to Step 1, under the best hyperparameter and parameter
settings obtained in Step 1. In Step 3, for making the param-
eter setting robust, the classifier is retrained with the final
training set composed of the merged S subsets, under the
best hyperparameter and cutoff settings give by Steps 1 and
2. Finally, under the best hyperparameter, parameter, and
cutoff settings, the generalized performance is estimated
with the test set, the T% of the data (this is called “test
performance”).

In the experiments, the range and step size shown in
Table 3 were used for the grid search in the setting steps.
Note that the values of ϵ were determined by changing the
smoothness of the loss function in Eq. (16) with a fixed step
of angle. Classification is sensitive to the cutoff, and thus a
finer search step was used. For setting the parameters (i.e.,

TABLE 5
Experiment I: Performance 2 for CM-KLOGR, KLOGR, and SVM,
where HM is the harmonic mean of Sens, Spec, PPV, and NPV.

Breast
Ideal Test Performance [%]

Classifiers Sens Spec PPV NPV HM
CM-KLOGR 95.83 100.00 100.00 97.87 98.40
KLOGR 100.00 95.65 92.31 100.00 96.88
SVM 100.00 95.65 92.31 100.00 96.88
Haberman

Ideal Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 87.50 82.61 63.64 95.00 80.36
KLOGR 50.00 100.00 100.00 85.19 77.31
SVM 50.00 100.00 100.00 85.19 77.31
Ecoli-pp

Ideal Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 100.00 100.00 100.00 100.00
KLOGR 100.00 96.55 83.33 100.00 94.43
SVM 100.00 100.00 100.00 100.00 100.00
Ecoli-imu

Ideal Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 50.00 100.00 100.00 93.75 78.95
KLOGR 50.00 96.67 66.67 93.55 71.38
SVM 50.00 100.00 100.00 93.75 78.95
Pop failures

Ideal Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 95.92 71.43 100.00 90.04
KLOGR 80.00 97.96 80.00 97.96 88.07
SVM 80.00 100.00 100.00 98.00 93.67
Yeast-1 vs 7

Ideal Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 100.00 100.00 100.00 100.00
KLOGR 66.67 100.00 100.00 97.73 88.43
SVM 100.00 51.16 12.50 100.00 33.46

training), as is obvious, the objective function of a classifier
was employed. For setting the hyperparameters and the
cutoff (i.e., validation), HM, the harmonic mean of Sens,
Spec, PPV, and NPV was used, to lead a classifier to the
increase in all these evaluation criteria.

Even though the evaluation processes are designed care-
fully, the difference in distribution between the validation
and test sets may still remain and make evaluation impre-
cise. To address this, two kinds of evaluation results were
discussed. Performance 1: test performance obtained under
the hyperparameter and cutoff settings which achieved the
best validation performance. This is a reasonable estimate
of generalization ability, but is possibly influenced by a
nuisance factor, i.e., the distribution difference. Performance
2: ideal test performance under the hyperparameter and
cutoff settings which achieved the best test performance.
This is another reasonable estimate of generalization ability,
representing an ideal situation when the distribution of
instances is the same between the validation and test sets,
and the hyperparameters and the cutoff are truly optimal.

5.3 Results and Discussion

5.3.1 Performance of CM-KLOGR compared to those of
KLOGR and SVM

Table 4 shows Performance 1 (the test performance under
the best settings of the hyperparameters and the cutoff
based on validation performance). Table 5 shows Perfor-
mance 2 (the ideal test performance under those based on
test performance). These tables include the results of CM-
KLOGR, KLOGR, and SVM only, for simplicity. The results
of the sampling methods will be provided later. The best
performances are indicated by bold font.
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TABLE 6
Experiment I: Performance 1 for CM-KLOGR, KLOGR with

under/oversampling (KLOGR-US and KLOGR-OS), and SVM with
under/oversampling (SVM-US and SVM-OS), where HM is the

harmonic mean of Sens, Spec, PPV, and NPV.
Breast

Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 95.83 95.65 92.00 97.78 95.27
KLOGR-US 100.00 95.65 92.31 100.00 96.88
KLOGR-OS 100.00 95.65 92.31 100.00 96.88
SVM-US 100.00 91.30 85.71 100.00 93.85
SVM-OS 100.00 89.13 82.76 100.00 92.37
Haberman

Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 75.00 82.61 60.00 90.48 75.25
KLOGR-US 100.00 00.00 25.81 50.00 00.00
KLOGR-OS 87.50 52.17 38.89 92.31 59.57
SVM-US 50.00 82.61 50.00 82.61 62.30
SVM-OS 50.00 78.26 44.44 81.82 59.26
Ecoli-pp

Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 93.10 71.43 100.00 89.40
KLOGR-US 100.00 82.76 50.00 100.00 76.80
KLOGR-OS 100.00 89.66 62.50 100.00 84.83
SVM-US 100.00 93.10 71.43 100.00 89.40
SVM-OS 100.00 93.10 71.43 100.00 89.40
Ecoli-imu

Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 50.00 96.67 66.67 93.55 71.38
KLOGR-US 75.00 76.67 30.00 95.83 57.02
KLOGR-OS 50.00 86.67 33.33 92.86 55.32
SVM-US 00.00 100.00 50.00 88.24 00.01
SVM-OS 50.00 93.33 50.00 93.33 65.12
Pop failures

Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 95.92 71.43 100.00 90.04
KLOGR-US 100.00 04.08 09.62 100.00 10.84
KLOGR-OS 80.00 97.96 80.00 97.96 88.07
SVM-US 100.00 97.96 83.33 100.00 94.77
SVM-OS 40.00 97.96 66.67 94.12 65.75
Yeast-1 vs 7

Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 88.37 37.50 100.00 68.99
KLOGR-US 100.00 02.33 06.67 99.99 06.67
KLOGR-OS 100.00 74.42 21.43 100.00 49.93
SVM-US 00.00 100.00 50.00 93.48 00.01
SVM-OS 33.33 81.40 11.11 94.59 28.00

In Table 4, for HM which is the harmonic mean of
Sens, Spec, PPV, and NPV, out of six datasets, CM-KLOGR
achieved the best for five, KLOGR did so for three, and
SVM for zero datasets, respectively. CM-KLOGR ranked
best most frequently. A trend can be seen that CM-KLOGR
worked better according to the increase in imbalance (refer
the ratio of majority to minority given in Table 2). Concretely
speaking, CM-KLOGR did not perform best under low
imbalance, tied for first place with KLOGR under moderate
imbalance, and performed best under high imbalance.

In Table 5, out of six datasets, CM-KLOGR achieved
the best for five, KLOGR did so for zero, and SVM for
three datasets, respectively. CM-KLOGR ranked best almost
perfectly, and this suggests that CM-KLOGR has a higher
potential to maximize its performance than KLOGR and
SVM have. Summarizing the results in Tables 4 and 5, CM-
KLOGR worked better than KLOGR and SVM.

5.3.2 Performance of CM-KLOGR compared to those of
KLOGR and SVM with the sampling methods

We move onto the results obtained by CM-KLOGR, KLOGR
with undersampling (KLOGR-US), KLOGR with oversam-
pling (KLOGR-OS), SVM with undersampling (SVM-US),

TABLE 7
Experiment I: Performance 2 for CM-KLOGR, KLOGR with

under/oversampling (KLOGR-US and KLOGR-OS), and SVM with
under/oversampling (SVM-US and SVM-OS), where HM is the

harmonic mean of Sens, Spec, PPV, and NPV.
Breast

Ideal Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 95.83 100.00 100.00 97.87 98.40
KLOGR-US 100.00 95.65 92.31 100.00 96.88
KLOGR-OS 100.00 95.65 92.31 100.00 96.88
SVM-US 100.00 95.65 92.31 100.00 96.88
SVM-OS 95.83 100.00 100.00 97.87 98.40
Haberman

Ideal Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 87.50 82.61 63.64 95.00 80.36
KLOGR-US 87.50 73.91 53.85 94.44 73.91
KLOGR-OS 87.50 78.26 58.33 94.74 77.06
SVM-US 50.00 100.00 100.00 85.19 77.31
SVM-OS 50.00 100.00 100.00 85.19 77.31
Ecoli-pp

Ideal Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 100.00 100.00 100.00 100.00
KLOGR-US 100.00 96.55 83.33 100.00 94.43
KLOGR-OS 100.00 93.10 71.43 100.00 89.40
SVM-US 100.00 96.55 83.33 100.00 94.43
SVM-OS 100.00 96.55 83.33 100.00 94.43
Ecoli-imu

Ideal Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 50.00 100.00 100.00 93.75 78.95
KLOGR-US 50.00 100.00 100.00 93.75 78.95
KLOGR-OS 50.00 96.67 66.67 93.55 71.38
SVM-US 50.00 96.67 66.67 93.55 71.38
SVM-OS 50.00 100.00 100.00 93.75 78.95
Pop failures

Ideal Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 95.92 71.43 100.00 90.04
KLOGR-US 100.00 00.00 09.26 50.00 00.00
KLOGR-OS 100.00 93.88 62.50 100.00 85.74
SVM-US 00.00 100.00 50.00 90.74 00.01
SVM-OS 80.00 97.96 80.00 97.96 88.07
Yeast-1 vs 7

Ideal Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 100.00 100.00 100.00 100.00
KLOGR-US 66.67 95.35 50.00 97.62 71.77
KLOGR-OS 100.00 97.67 75.00 100.00 91.80
SVM-US 100.00 88.37 37.50 100.00 68.99
SVM-OS 100.00 88.37 37.50 100.00 68.99

and SVM with oversampling (SVM-OS). Table 6 shows
Performance 1 (the test performance), and Table 7 shows
Performance 2 (the ideal test performance).

In Table 6, for HM which is the harmonic mean of
Sens, Spec, PPV, and NPV, out of six datasets, CM-KLOGR
achieved the best for four, and KLOGR-US, KLOGR-OS,
SVM-US, and SVM-OS did so for one or two datasets,
respectively. Although the number of wins was not so large,
CM-KLOGR ranked best most frequently and was more
stable in performance than the sampling methods were.

In Table 7, out of six datasets, CM-KLOGR achieved
the best for six, and KLOGR-US, KLOGR-OS, SVM-US, and
SVM-OS did so for zero to two datasets, respectively. CM-
KLOGR ranked best perfectly, and this suggests that CM-
KLOGR has a higher potential to maximize its performance
than the sampling methods have. In summary of the results
in Tables 6 and 7, CM-KLOGR worked better than the
simple sampling methods. Remember that sampling is a
kind of preprocessing, and CM-KLOGR is not exclusive to
sampling. By the results that CM-KLOGR worked better as
a whole, and the sampling methods were effective for some
datasets, the positive perspective of combining CM-KLOGR
with sampling was suggested.
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TABLE 8
Experiment II: Performance 1 for CM-KLOGR, KLOGR, and SVM,

where HM is the harmonic mean of Sens and PPV.
Breast

Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 95.83 95.65 92.00 97.78 93.88
KLOGR 100.00 95.65 92.31 100.00 96.00
SVM 100.00 93.48 88.89 100.00 94.12
Haberman

Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 75.00 82.61 60.00 90.48 66.67
KLOGR 62.50 78.26 50.00 85.71 55.56
SVM 62.50 73.91 45.45 85.00 52.63
Ecoli-pp

Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 93.10 71.43 100.00 83.33
KLOGR 100.00 93.10 71.43 100.00 83.33
SVM 100.00 86.21 55.56 100.00 71.43
Ecoli-imu

Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 50.00 96.67 66.67 93.55 57.14
KLOGR 50.00 96.67 66.67 93.55 57.14
SVM 50.00 93.33 50.00 93.33 50.00
Pop failures

Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 60.00 97.96 75.00 96.00 66.67
KLOGR 80.00 97.96 80.00 97.96 80.00
SVM 80.00 97.96 80.00 97.96 80.00
Yeast-1 vs 7

Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 100.00 100.00 100.00 100.00
KLOGR 100.00 81.40 27.27 100.00 42.86
SVM 66.67 93.02 40.00 97.56 50.00

5.3.3 Comprehensive Discussion
Based on the discussions in Sections 5.3.1 and 5.3.2, it can be
concluded that CM-KLOGR outperformed its competitors
(KLOGR and SVM with and without under/oversampling
methods) in many conditions. CM-KLOGR worked well
under the default of equal weights on the four evaluation
criteria, and its good performance under different weights
is expected, too. This is examined in Experiment II.

Having confirmed the effectiveness of CM-KLOGR, con-
sider now its relation to the conventional imbalanced data
classification methods, the cost-sensitive, sampling, and en-
semble ones. CM-KLOGR can be interpreted to be upward
compatible to cost-sensitive methods; the crucial difference
is that CM-KLOGR directly increases the values of the
evaluation criteria, with no subjective or trial-and-error cost
setting. In principle, CM-KLOGR can work with not only
sampling methods but also ensemble methods. It will be
worthwhile to examine the performance of CM-KLOGR
combined with sampling and/or ensemble methods for a
possible further improvement.

6 EXPERIMENT II: EVALUATION UNDER DIFFER-
ENT WEIGHTS ON EVALUATION CRITERIA

6.1 Purpose and Conditions

In Experiment I, with a default setting to assign equal
weights to each of the four evaluation criteria, CM-KLOGR
increased the values of HM. It is easy for CM-KLOGR to
assign different weights depending on the importance of the
evaluation criteria, and thus Experiment II examines how
CM-KLOGR works with different weights.

With regard to the weights, two types of cases were
assumed. One was that positives had a considerably higher

TABLE 9
Experiment II: Performance 2 for CM-KLOGR, KLOGR, and SVM,

where HM is the harmonic mean of Sens and PPV.
Breast

Ideal Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 95.83 100.00 100.00 97.87 97.87
KLOGR 100.00 95.65 92.31 100.00 96.00
SVM 100.00 95.65 92.31 100.00 96.00
Haberman

Ideal Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 75.00 86.96 66.67 90.91 70.59
KLOGR 87.50 73.91 53.85 94.44 66.67
SVM 50.00 100.00 100.00 85.19 66.67
Ecoli-pp

Ideal Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 100.00 100.00 100.00 100.00
KLOGR 100.00 96.55 83.33 100.00 90.91
SVM 100.00 100.00 100.00 100.00 100.00
Ecoli-imu

Ideal Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 75.00 93.33 60.00 96.55 66.67
KLOGR 50.00 96.67 66.67 93.55 57.14
SVM 50.00 100.00 100.00 93.75 66.67
Pop failures

Ideal Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 95.92 71.43 100.00 83.33
KLOGR 80.00 97.96 80.00 97.96 80.00
SVM 80.00 100.00 100.00 98.00 88.89
Yeast-1 vs 7

Ideal Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 100.00 100.00 100.00 100.00
KLOGR 66.67 100.00 100.00 97.73 80.00
SVM 66.67 93.02 40.00 97.56 50.00

priority than negatives, and the overlooking and misrecog-
nition of positives were penalized. For example, infected
people must be detected, and uninfected people must be
screened out. Sens and PPV were emphasized by assigning
a weight of 1 on them and 0 on the other evaluation criteria.
The HM of Sens and PPV (in other words, recall and preci-
sion), which is equal to F-measure [48], was used for training
CM-KLOGR, validating all the classifiers, and testing all the
classifiers. The other was a case in which both positives and
negatives were prioritized, and the overlooking of positives
and negatives were penalized, such as that infected and
uninfected people must be detected. Sens and Spec were put
emphasis, and HM was their harmonic mean with a weight
of 1 on Sens and Spec and 0 on the others. The HM of Sens
and Spec was used as well as the HM of Sens and PPV in
the former case. The remaining conditions were the same as
those of Experiment I.

6.2 Evaluation Process Design

For dividing and feeding datasets, setting the hyperparame-
ters, parameters, and cutoff, and estimating the classification
performance, the same processes in Experiment I were ap-
plied (See Section 5.2). In Steps 1, 2, and 3, the HM of Sens
and PPV was used in the former case, and the HM of Sens
and Spec was used in the latter case.

6.3 Results and Discussion

6.3.1 Performance of CM-KLOGR to raise Sens and PPV

The results obtained by CM-KLOGR, KLOGR, and SVM
are provided and discussed in details, but because of space
limitations, those by KLOGR and SVM with sampling are
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TABLE 10
Experiment II: Performance 1 for CM-KLOGR, KLOGR, and SVM,

where HM is the harmonic mean of Sens and Spec.
Breast

Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 95.83 93.48 88.46 97.73 94.64
KLOGR 100.00 95.65 92.31 100.00 97.78
SVM 100.00 93.48 88.89 100.00 96.63
Haberman

Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 75.00 82.61 60.00 90.48 78.62
KLOGR 75.00 78.26 54.55 90.00 76.60
SVM 50.00 78.26 44.44 81.82 61.02
Ecoli-pp

Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 89.66 62.50 100.00 94.54
KLOGR 100.00 93.10 71.43 100.00 96.43
SVM 100.00 86.21 55.56 100.00 92.59
Ecoli-imu

Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 50.00 90.00 40.00 93.10 64.29
KLOGR 75.00 93.33 60.00 96.55 83.17
SVM 75.00 80.00 33.33 96.00 77.42
Pop failures

Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 81.63 35.71 100.00 89.89
KLOGR 100.00 93.88 62.50 100.00 96.84
SVM 100.00 93.88 62.50 100.00 96.84
Yeast-1 vs 7

Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 88.37 37.50 100.00 93.83
KLOGR 100.00 81.40 27.27 100.00 89.74
SVM 100.00 81.40 27.27 100.00 89.74

omitted and mentioned briefly. For CM-KLOGR, KLOGR,
and SVM, Tables 8 and 9 show Performance 1 (the test per-
formance) and Performance 2 (the ideal test performance),
respectively.

In Table 8, for HM which is the harmonic mean of Sens
and PPV, out of six datasets, CM-KLOGR achieved the best
for four, KLOGR did so for four, and SVM for one datasets,
respectively. CM-KLOGR and KLOGR ranked best most fre-
quently, but in regard to the difference in numerical values,
CM-KLOGR is better than KLOGR. In Table 9, CM-KLOGR
achieved the best for five, KLOGR did so for zero, and
SVM for three datasets, respectively. CM-KLOGR ranked
best almost perfectly, and this suggests that CM-KLOGR has
a higher potential to maximize its performance than KLOGR
and SVM have.

Similar trends to those in Tables 8 and 9 appeared in
the comparison to KLOGR and SVM with sampling; CM-
KLOGR ranked best most frequently with respect to both
Performances 1 and 2. Summarizing all the results, CM-
KLOGR worked better than the other classifiers.

6.3.2 Performance of CM-KLOGR to raise Sens and Spec
Similarly to Section 6.3.1, the results obtained by CM-
KLOGR, KLOGR, and SVM are mainly discussed here. In
Table 10 on Performance 1, for HM which is the harmonic
mean of Sens and Spec, out of six datasets, CM-KLOGR
achieved the best for two, KLOGR did so for four, and
SVM for one datasets, respectively. KLOGR ranked best
most frequently, followed by CM-KLOGR. For CM-KLOGR,
its clear superiority and trend did not appear. In Table 11
on Performance 2, CM-KLOGR achieved the best for six,
KLOGR did so for zero, and SVM for two datasets, respec-
tively. CM-KLOGR ranked best perfectly, and this suggests

TABLE 11
Experiment II: Performance 2 for CM-KLOGR, KLOGR, and SVM,

where HM is the harmonic mean of Sens and Spec.
Breast

Ideal Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 95.83 100.00 100.00 97.87 97.87
KLOGR 100.00 95.65 92.31 100.00 97.78
SVM 100.00 95.65 92.31 100.00 97.78
Haberman

Ideal Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 87.50 82.61 63.64 95.00 84.98
KLOGR 62.50 86.96 62.50 86.96 72.73
SVM 87.50 78.26 58.33 94.74 82.62
Ecoli-pp

Ideal Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 100.00 100.00 100.00 100.00
KLOGR 100.00 96.55 83.33 100.00 98.24
SVM 100.00 100.00 100.00 100.00 100.00
Ecoli-imu

Ideal Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 83.33 44.44 100.00 90.91
KLOGR 50.00 96.67 66.67 93.55 65.91
SVM 100.00 70.00 30.77 100.00 82.35
Pop failures

Ideal Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 95.92 71.43 100.00 97.92
KLOGR 100.00 93.88 62.50 100.00 96.84
SVM 100.00 95.92 71.43 100.00 97.92
Yeast-1 vs 7

Ideal Test Performance [%]
Classifiers Sens Spec PPV NPV HM
CM-KLOGR 100.00 100.00 100.00 100.00 100.00
KLOGR 66.67 100.00 100.00 97.73 80.00
SVM 100.00 83.72 30.00 100.00 91.14

that CM-KLOGR has a higher potential to maximize its
performance than KLOGR and SVM have.

The results by KLOGR and SVM with sampling were not
provided to save space, but let us note that, compared to
them, CM-KLOGR ranked best most frequently regarding
both Performances 1 and 2. In summary of all the results,
although CM-KLOGR could not outperform KLOGR in
Table 10, the high potential of CM-KLOGR was suggested
by its superiority in Table 11 and that to KLOGR and SVM
with sampling.

6.3.3 Comprehensive Discussion

As discussed in Sections 6.3.1 and 6.3.2, CM-KLOGR outper-
formed its competitors (KLOGR and SVM with and without
under/oversampling methods) in many conditions. Specifi-
cally speaking, CM-KLOGR was more effective to raise the
harmonic mean of Sens and PPV, namely F-measure, and
that of Sens and Spec. Considering the results of Experi-
ments I and II together, CM-KLOGR worked effectively and
flexibly depending on the prioritized evaluation criteria,
such as all of Sens, Spec, PPV, and NPV, or two of them
(Sens and PPV, or Sens and Spec).

7 CONCLUSIONS

We proposed an imbalanced data classifier, the confusion-
matrix-based kernel logistic regression (CM-KLOGR). CM-
KLOGR aims to directly increase the harmonic mean of
evaluation criteria derived from a confusion matrix (sen-
sitivity, specificity, positive predictive value, and negative
predictive value), through a consistent learning process
realized by KLOGR and minimum classification error and
generalized probabilistic descent (MCE/GPD) learning. In
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the experiments, CM-KLOGR outperformed KLOGR and
support vector machine (SVM) with or without sampling,
for several datasets under different settings of the weights
on the evaluation criteria. It was confirmed that CM-KLOGR
can increase the values of the evaluation criteria in a well-
balanced way, adaptively to their priorities.
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