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Abstract—Online data sharing for increased productivity and efficiency is one of the primary requirements today for any organization.
The advent of cloud computing has pushed the limits of sharing across geographical boundaries, and has enabled a multitude of users
to contribute and collaborate on shared data. However, protecting online data is critical to the success of the cloud, which leads to the
requirement of efficient and secure cryptographic schemes for the same. Data owners would ideally want to store their data/files online
in an encrypted manner, and delegate decryption rights for some of these to users, while retaining the power to revoke access at any
point of time. An efficient solution in this regard would be one that allows users to decrypt multiple classes of data using a single key of
constant size that can be efficiently broadcast to multiple users. Chu et al. proposed a key aggregate cryptosystem (KAC) in 2014 to
address this problem, albeit without formal proofs of security. In this paper, we propose CPA and CCA secure KAC constructions that
are efficiently implementable using elliptic curves and are suitable for implementation on cloud based data sharing environments. We
lay special focus on how the standalone KAC scheme can be efficiently combined with broadcast encryption to cater to m data users
and m′ data owners while reducing the reducing the secure channel requirement from O(mm′) in the standalone case to O(m+m′).

Index Terms—Cloud Computing, Data Sharing, Data Security, Key-Aggregate Cryptosystem, Provable Security, Scalability, Broadcast
Encryption, Semantic Security, CCA Security
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1 INTRODUCTION

THE recent advent of cloud computing has pushed the
limits of data sharing capabilities for numerous appli-

cations that transcend geographical boundaries and involve
millions of users. Governments and corporations today
treat data sharing as a vital tool for enhanced productivity.
Cloud computing has revolutionized education, healthcare
and social networking. Perhaps the most exciting use case
for cloud computing is its ability to allow multiple users
across the globe share and exchange data, while saving the
pangs of manual data exchanges, and avoiding the creation
of redundant or out-of-date documents. Social networking
sites have used the cloud to create a more connected world
where people can share a variety of data including text and
multimedia. Collaborative tools commonly supported by
cloud platforms and are extremely popular since they lead
to improved productivity and synchronization of effort. The
impact of cloud computing has also pervaded the sphere
of healthcare, with smartphone applications that allow re-
mote monitoring and even diagnosis of patients. In short,
cloud computing is changing various aspects of our lives in
unprecedented ways.

Despite all its advantages, the cloud is susceptible to
privacy and security attacks, that are a major hindrance to its
wholesome acceptance as the primary means of data sharing
in todays world. According to a survey carried out by IDC
Enterprise Panel in August 2008 [1], Cloud users regarded

security as the top challenge with 75% of surveyed users
worried about their critical business and IT systems being
vulnerable to attack. While security threats from external
agents are widespread, malicious service providers must
also be taken into consideration. Since online data almost
always resides in shared environments (for instance, multi-
ple virtual machines running on the same physical device),
ensuring security and privacy on the cloud is a non trivial
task. When talking about security and privacy of data in
the cloud, it is important to lay down the requirements
that a data sharing service must provide in order to be
considered secure. We list down here some of the most
primary requirements that a user would want in a cloud-
based data sharing service:

• Data Confidentiality: Unauthorized users (including
the cloud service provider), should not be able to
access the data at any given time. Data should remain
confidential in transit, at rest and on backup media.

• User revocation: The data owner must be able to
revoke any user’s access rights to data the without
affecting other authorized users in the group.

• Scalability and Efficiency: Perhaps the biggest chal-
lenge faced by data management on the cloud is
maintaining scalability and efficiency in the face of
immensely large user bases and dynamically chang-
ing data usage patterns.

• Collusion between entities: Any data sharing service
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in the cloud must ensure that even when certain
malicious entities collude, they should still not be
able to access any of the data in an unauthorized
fashion.

A traditional way of ensuring data privacy is to depend
on the server to enforce access control mechanisms [2].
This methodology is prone to privilege escalation attacks
in shared data environments such as the cloud, where data
corresponding to multiple users could reside on the same
server. Current technology for secure online data sharing
comes in two major flavors - trusting a third party auditor
[3], or using the user’s own key to encrypt her data while
preserving anonymity [4]. In either case, a user would want
a reliable and efficient cryptographic scheme in place, with
formal guarantees of security, high scalability and ease of
use. The main challenge in designing such a cryptosystem
lies in effective sharing of encrypted data. A data sharing
scheme on the cloud is only successful if data owners can
delegate the access rights to their data efficiently to multiple
users, who can then access the data directly from the cloud
servers. Figure 1 describes a realistic online data sharing set-
up on the cloud. Assume that a data owner Alice is using
an online data sharing service such as Microsoft OneDrive
[5] to store certain classes of data (here class may refer to
any data structure such as a file, folder or any collection of
these). She wishes to add an additional layer of security for
her data by storing them in an encrypted fashion. Now, she
intends to share a specific subset S of these documents with
a set Ŝ of data users. For this, she needs to provide each
of these users with decryption rights to specific classes of
the data that they are authorized to access. The challenge
therefore is to design a secure and efficient online partial
data sharing scheme that allows Alice to perform this task
in an efficient and secure manner.

A näive (and extremely inefficient) solution is to have a
different decryption key for each message class, and share
them accordingly with the designated users via secured
channels. This scheme is not practically deployable for two
major reasons. Firstly, the number of secret keys would
grow with the number of data classes. Secondly, any user
revocation event would require Alice to entirely re-encrypt
the corresponding subset of data, and distribute the new
set of keys to the other existing valid users. This makes the
scheme inefficient and difficult to scale. Since the decryp-
tion key in public key cryptosystems is usually sent via a
secure channel, smaller key sizes are desirable. Moreover,
resource constrained devices such as wireless sensor nodes
and smart phones cannot afford large expensive storage for
the decryption keys either. An ideal scenario, as described
in Figure 1, is where Alice can construct a single constant
size decryption key KS that combines the decryption rights
to each of the data classes in S , and then use a public key
framework to broadcast this key to the target set of users
Ŝ in the form of a low overhead broadcast aggregate key
K(S,Ŝ). This scheme is efficient, avoids the use of secret
channels which are costly and difficult to realize in practice,
and is scalable to any arbitrary number of data classes and
data users. In this paper, we attempt to build precisely such
a data sharing framework that is provably secure and at the
same time, efficiently implementable.

1.1 The Key-Aggregate Encryption Scheme
The most efficient proposition pertaining to our problem
statement, to the best of our knowledge, is made in [6].
The proposition is to allow Alice to combine the decryption
power of multiple data classes into a single key of constant
size. Thus, while each class of data is encrypted using a
different public key, a single decryption key of constant
size is sufficient to decrypt any subset of these classes.
This system is popularly known as the key-aggregate cryp-
tosystem (KAC), and derives its roots from the seminal
work on broadcast encryption by Boneh et.al. [7]. KAC
may essentially be considered as a dual notion of broadcast
encryption [7]. In broadcast encryption, a single ciphertext is
broadcast among multiple users, each of whom may decrypt
the same using their own individual private keys. In KAC,
a single aggregate key is distributed among multiple users
and may be used to decrypt ciphertexts encrypted with
respect to different classes. For broadcast encryption, the
focus is on having shorter ciphertexts and low overhead
individual decryption keys, while in KAC, the focus is in
having short ciphertexts and low overhead aggregate keys.
However, KAC as proposed in [6] suffers from two major
drawbacks, each of which we address in this paper.

1) Firstly, no concrete proofs of cryptographic security
for KAC are provided by the authors of [6]. We
note here that there exist significant differences in
the fundamental constructs for broadcast encryption
and key aggregate encryption. Broadcast encryp-
tion essentially involves two classes of parties - the
broadcaster who broadcasts the secret key, and the
data users who decrypt the broadcast message. On
the other hand, KAC involves three parties - the
data owner who encrypts and puts the data in the
online sharing environment, the data users who
access the data by decrypting it, and the trusted
third party that generates the aggregate key. Thus a
security framework for the security of KAC must be
defined in order to establish the specific adversarial
models against which KAC is secure.

2) Secondly, the scheme proposed in [6] does not ex-
plicitly address the issue of aggregate key distri-
bution among multiple users. In a practical data
sharing environment with millions of users, it is
neither practical nor efficient to depend on the exis-
tence of dedicated one-to-one secure channels for
key distribution. A public key based solution for
broadcasting the aggregate key among an arbitrarily
large number of users is hence desirable.

1.2 Related Work
In this section we present a brief overview of public and
private key cryptographic schemes in literature for secure
online data sharing. While many of them focus on key
aggregation in some form or the other, very few have the
ability to provide constant size keys to decrypt an arbitrary
number of encrypted entities.

1.2.1 Hierarchical Encryption
One of the most popular techniques for access control in
online data storage is to use a pre-defined hierarchy of secret
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Fig. 1: A Desirable Online Data Sharing Scheme

keys [8], [9], [10], [11] in the form of a tree-like structure,
where access to the key corresponding to any node implic-
itly grants access to all the keys in the subtree rooted at
that node. For instance, [12] uses repeated evaluations of
a pseudo-random function/block cipher on a fixed secret
to generate a tree hierarchy of symmetric keys. Some more
advanced schemes [13], [14], [15] extend access control to
cyclic and acyclic graphs. Several provably secure identity-
based flavors of hierarchical encryption have also been stud-
ied extensively in [16], [17], [18], [19]. A major disadvantage
of hierarchical encryption schemes is that granting access
to only a selected set of branches within a given subtree
warrants an increase in the number of granted secret keys.
This in turn blows up the size of the key shared.

1.2.2 Compact Key Identity-Based Encryption
Identity-Based Encryption (IBE) is a public key-based en-
cryption scheme in which the public key for any user is an
identity-string corresponding to that user. Proposed initially
in [20], IBE was concretized by the proposition of two very
widely cited and popular IBEs - The Boneh-Franklin scheme
[21] and Cocks’ encryption scheme [22]. An IBE system
comprises of a trusted private key generator that holds a
master-secret key and issues a secret key to each user based
on the user identity. Each user receives a message that has
been encrypted using her id and some public parameters,
and can decrypt the same using the secret key allotted to her
by the trusted party. Compact key IBEs have been proposed
in [23] and [24]. The former approach involves the use of
random oracles while the latter shuns the use of oracles.
Both these schemes allow aggregation of keys; however each
key must come from a different identity division. Fuzzy IBE
[25] allows for a single compact key to decrypt multiple
ciphertexts, but they must have been encrypted under a
closed set of identities, and the scheme does not work in
practical scenarios for arbitrary identities.

1.2.3 Attribute Based Encryption
Attribute-based encryption (ABE) [26], [27], [28] allows each
user to be identified by a set of attributes. An encrypted
file stored in cloud can only be decrypted by an user who

has access to the corresponding secret key. The secret key
is securely transmitted to the user who satisfies the access
control policies set by the data owner. A major drawback of
this scheme is that each time the access right to a particular
user is revoked the entire ciphertext has to be recrypted in
the cloud. The idea of ABE has been extended to shared keys
for user groups in [29] with the focus on collusion resistance
and not on key size compression.

1.3 Our Contributions

The main contributions of this paper can be enumerated as
follows:

1) In this paper we propose an efficiently imple-
mentable version of the basic key-aggregate cryp-
tosystem (KAC) in [6] using asymmetric bilinear
pairings. We prove our construction to be semanti-
cally secure against a non-adaptive adversary in the
standard model under appropriate security assump-
tions. We also demonstrate that the construction is
collusion resistant against any number of colluding
parties.

2) We propose a CCA-secure fully collusion resistant
construction for the basic KAC scheme with low
overhead ciphertexts and aggregate keys. To the
best of our knowledge, this is the first KAC con-
struction in the cryptographic literature proven to
be CCA secure in the standard model.

3) We demonstrate how the basic KAC framework
may be efficiently extended and combined with
broadcast encryption schemes for distributing the
aggregate key among an arbitrary number of data
users in a real-life data sharing environment. The
extension has a secure channel requirement of
O(m + m′) for m data users and m′ data owners,
which is an improvement over the O(mm′) re-
quirement reported in [6]. In addition, the extended
construction continues to have the same overhead
for the public parameters, ciphertexts and aggregate
keys, and does not require any secure storage for the
aggregate keys, which are publicly broadcast.
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4) Experimental results in an actual cloud environ-
ment are presented to validate the space and time
complexity requirements, as well the network and
communication requirements for our proposed con-
structions.

Table 1 compares various key delegation schemes discussed
in Section 1.2 with our proposed KAC constructions for m′

data owners and m data users. We point out here that both
the original KAC [6] and our generalized KAC construc-
tion achieves the best overall performance and efficiency
among all these schemes in terms of the decryption key
size and the ciphertext overhead. However, our proposed
generalized KAC construction requires much fewer secure
channels due to its combination with broadcast encryption,
that makes aggregate key distribution among multiple users
more efficient and practically realizable.

2 PRELIMINARIES

We begin by formally defining the framework key-aggregate
cryptosystem (KAC). For clarity of presentation, we describe
the framework in two parts. The basic framework focuses on
generating the aggregate key for any arbitrary subset of data
classes, while the extended framework aims to broadcast
this aggregate key among arbitrarily large subsets of data
users. We also outline the game based framework for for-
mally proving the static security of these schemes. Finally,
we state the complexity assumptions used for proving the
security of these schemes.

2.1 Key-Aggregate Cryptosystem (KAC) : The Basic
Framework
The basic KAC framework presented here is the same as
that in [6] and is presented for completeness. KAC is an
ensemble of five randomized polynomial-time algorithms.
The system administrator is responsible for setting up the
public parameters via the SetUp operation. A data owner
willing to share her data using this system registers to
receive her own public and private key pairs, generated
using the KeyGen operation. The data owner is respon-
sible for classifying each of her data files/messages into
a specific class i. Each message is accordingly encrypted
by an Encrypt operation and stored online in the cloud.
When delegating the decryption rights to a specific subset of
message classes, the data owner uses the Extract operation
to generate a constant-size aggregate decryption key unique
to that subset. Finally, an authorized data user can use this
aggregate key to decrypt any message belonging to any class
i ∈ S . We now describe each of the five algorithms involved
in KAC:

1) SetUp(1λ,m): Takes as input the number of data
classes n and the security parameter λ. Outputs the
public parameter param.

2) KeyGen(): Outputs the public key PK and the
master-secret key msk for a data owner registering
in the system.

3) Encrypt(param,PK, i,M): Takes as input the pub-
lic key parameter PK, the data class i and the plain-
text data M. Outputs the corresponding ciphertext
C.

4) Extract(param,msk,S): Takes as input the mas-
ter secret key and a subset of data classes S ⊆
{1, 2, · · · , n}. Computes the aggregate key KS for
all encrypted messages belonging to these subset of
classes.

5) Decrypt(param, C, i,S,KS): Takes as input the ci-
phertext C, the data class i and the aggregate key
KS corresponding to the subset S such that i ∈ S .
Outputs the decrypted message.

2.2 Security of Basic KAC : A Game Based Framework
In this paper, we propose a formal framework for proving
the security of the basic KAC introduced in Section 2.1.
We introduce a game between an attack algorithm A and
a challenger B, both of whom are given n, the total number
of message classes, as input. The game proceeds through the
following stages:

1) Init: Algorithm A begins by outputting a set S∗ ⊆
{1, 2, · · · , n} of data classes that it wishes to attack.
Challenger B randomly chooses a message class i ∈
S∗.

2) SetUp: Challenger B sets up the KAC system by
generating the public parameter param, the pub-
lic key PK and the master secret key msk. Since
collusion attacks are allowed in our framework, B
furnishes A with the aggregate key KS∗ that allows
A to decrypt any message class j /∈ S∗.

3) Query Phase 1: Algorithm A adaptively issues
decryption queries q1, · · · , qv where a decryption
query comprises of the tuple (j, C), where j ∈ S∗.
The challenger responds with a valid decryption of
C.

4) Challenge: A picks at random two messages M0

andM1 from the set of possible plaintext messages
belonging to class i and provides them to B. To
generate the challenge, B randomly picks b ∈ {0, 1},
and sets the challenge to A as (C∗,M0,M1), where
C∗ = Encrypt(param,PK, i,Mb).

5) Query Phase 2: Algorithm A continues to adap-
tively issue decryption queries qv+1, · · · , qQD

where
a decryption query now comprises of the tuple (j, C)
under the restriction that C 6= C∗. The challenger
responds as in phase 1.

6) Guess: The adversary A outputs a guess b′ of b. If
b′ = b, A wins the game.

The game above models an attack in the real world
setting where users who do not have authorized access to
the subset S∗ collude (by compromising the knowledge of
the aggregate key for different subsets) to try and expose
a message in this subset. Note that the adversary A is non-
adaptive; it chooses S , and obtains the aggregate decryption
key for all message classes outside of S , before it even
sees the public parameters param or the public key PK.
Let AdvA,n denote the probability that A wins the game
when the challenger is given n as input. We next define
the security of KAC against chosen ciphertext attacks (CCA)
and chosen plaintext attacks (CPA) as follows:

• CCA Security: We say that a key-aggregate encryp-
tion system is (τ, ε, n, qD) CCA secure if for all non-
adaptive τ -time algorithmsA that can make a total of
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TABLE 1: A Comparative Summary of various Data Sharing Schemes for m′ Data Owners and m Data Users

Scheme Decryption Key Size Ciphertext Size Encryption Type Secure Channels
Hierarchical Encryption [15] Generally non-constant Constant Symmetric/Public key O(mm′)

Compact Key Symmetric Encryption [30] Constant Constant Symmetric O(mm′)
Compact Key IBE [24] Constant Non-constant Public key O(m)

Attribute-Based Encryption [26] Non-constant Constant Public key O(m)
Basic KAC [6] Constant Constant Public key O(mm′)

Generalized KAC (Our Proposal) Constant Constant Public key O(m+m′)

qD decryption queries, we have that |AdvA,n − 1
2 | <

ε.
• CPA Security: We say that a key-aggregate encryp-

tion system is (τ, ε, n) CPA secure if it is (τ, ε, n, 0)
CCA secure.

2.3 Bilinear Pairings

In this paper, we make several references to bilinear non-
degenerate mappings on elliptic curve sub-groups, popu-
larly known in literature as pairings. Hence we begin by
providing a brief background on bilinear pairing based
schemes on elliptic curve subgroups. A pairing is a bilinear
map defined over elliptic curve subgroups. Let G1 and G2

be two (additive) cyclic elliptic curve subgroups of the same
prime order q. Let GT be a multiplicative group, also of
order q with identity element 1. Also, let P and Q be points
on the elliptic curve that generate the groups G1 and G2

respectively. A mapping e : G1 × G2 −→ GT is said to be a
bilinear map if it satisfies the following properties:

• Bilinear: For all P1 ∈ G1, Q1 ∈ G2, and a, b ∈ Zq , we
have e(aP1, bQ1) = e(P1, Q1)

ab.
• Non-degeneracy: If P and Q be the generators for

G1 and G2 respectively where neither group only
contains the point at infinity, then e(P,Q) 6= 1.

• Computability: There exists an efficient algorithm to
compute e(P1, Q1) for all P1 ∈ G1 and Q1 ∈ G2.

2.4 Notations Used

This section introduces some notations that are used
throughout this paper. We assume the existence of equi-
prime order (q) elliptic curve subgroups G1 and G2, along
with their generators P andQ. We also assume the existence
of a multiplicative cyclic group GT , also of order q with
identity element 1. Let α be a randomly chosen element in
Zq . For any point R in either G1 or G2, let Rx = αxR,
where x is an integer. We denote by YR,α,l the set of 2l − 1
points (R1, R2, · · · , Rl, Rl+2, · · · , R2l). Note that the term
Rl+1 is missing. We assume the existence of an efficiently
computable asymmetric bilinear pairing e : G1×G2 −→ GT .
Finally, any group element in G1,G2 or GT is assumed to
have size O(η1), O(η2) and O(ηT ) respectively.

2.5 Complexity Assumption for Security

In this section, we introduce some complexity assumptions
used to prove the security of our KAC constructions in
this paper. We propose two complexity assumptions, both
of which are extended versions of the generalized bilinear
Diffie Hellman exponent (BDHE) assumption introduced in
[7]:

• The asymmetric decision l-BDHE problem: Given an in-
put (H, I = (P,Q, YP,α,l, YQ,α,l), Z), where H ∈ G2

and Z ∈ GT , and the bilinear pairing e, decide if
Z = e(Pl+1, H).

• The extended asymmetric decision l-BDHE
problem: Given an input ((H1, H2), I =
(P,Q, YP,α,l, YQ,α,l)(Z1, Z2)), and the bilinear
pairing e, where H1, H2 ∈ G2 and Z1, Z2 ∈ GT
decide if (Z1, Z2) = (e(Pl+1, H1), e(Pl+1, H2)).

Let A be a τ -time algorithm that takes an input chal-
lenge for asymmetric l-BDHE and outputs a decision bit
b ∈ {0, 1}. We say that A has advantage ε in solving the
asymmetric decision l-BDHE problem if

|Pr[A(H, I, e(Pl+1, H)) = 0]− Pr[A(I, Z) = 0]| ≥ ε

where the probability is over random choice of H ∈ G2,
random choice of Z ∈ GT , random choice of α ∈ Zq , and
random bits used by A. We refer to the distribution on the
left as LBDHE and the distribution on the right as RBDHE.

Again, let B be a τ -time algorithm that takes an input
challenge for the extended asymmetric l-BDHE and outputs
a decision bit b ∈ {0, 1}. We say that B has advantage ε in
solving the extended asymmetric decision l-BDHE problem
if

|Pr[B ((H1, H2), I, (e(Pl+1, H1), e(Pl+1, H2))) = 0]

−Pr[B((H1, H2), I, (Z1, Z2)) = 0]| ≥ ε
where the probability is over random choice of H1, H2 ∈
G2, random choice of Z1, Z2 ∈ GT , random choice of
α1, α2 ∈ Zq , and random bits used by B. We now refer to
the distribution on the left as L′BDHE and the distribution on
the right as R′BDHE. We next state the following definitions.

Definition 1. The asymmetric decision (τ, ε, l)-BDHE as-
sumption holds in (G1,G2) if no τ -time algorithm has advantage
at least ε in solving the asymmetric decision l-BDHE problem in
(G1,G2).

Definition 2. The extended asymmetric decision (τ, ε, l)-
BDHE assumption holds in (G1,G2) if no τ -time algorithm has
advantage at least ε in solving the extended asymmetric decision
l-BDHE problem in (G1,G2).

Finally, it is quite evident that the extended asymmetric
decision (τ, ε, l)-BDHE assumption holds in (G1,G2) if the
asymmetric decision (τ, ε, l)-BDHE assumption holds in
(G1,G2).

2.6 Signature Schemes
We briefly recall the standard definition of a signature
scheme in the cryptographic literature. A signature scheme
consists of the following polynomial-time algorithms:
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1) SigKeyGen(1λ): Takes as input the security param-
eter λ and outputs a key pair (KSIG, VSIG), where
KSIG and VSIG are the private signing key and
public verification key respectively.

2) Sign(KSIG,M): Takes as input the signing key
KSIG and a messageM . Outputs the corresponding
signature-message pair (Sig,M).

3) V erify(VSIG, (Sig,M)): Takes as input the ver-
ification key VSIG and a signature-message pair
(Sig,M). Outputs 1 if Sig is a valid signature for
M under the signing key KSIG and 0 otherwise.

We also recall that a signature scheme
(SigKeyGen, Sign, V erify) is said to be (τ, ε, qS) strongly
existentially unforgeable if no τ -time adversary, making at
most qS signature signature queries, fails to produce some
new message-signature pair with probability at least 1 − ε
for ε negligible in the security parameter λ. For a more
complete description, refer [31].

3 A PROVABLY SECURE BASIC KAC USING
ASYMMETRIC BILINEAR PAIRINGS

In this section, we present the design of the basic key-
aggregate cryptosystem introduced in [6] using asymmetric
bilinear pairings that are practical and efficiently imple-
mentable, and formally prove its cryptographic security. The
basic KAC construction serves to illustrate how a single data
owner with n different classes of encrypted data online, can
generate a single decryption key corresponding to any arbi-
trary subset S ⊆ {1, · · · , n} of these data classes. We prove
our construction to be non-adaptively CPA secure and fully
collusion resistant against any number of colluding parties,
under the asymmetric n-BDHE exponent assumption.

3.1 Construction

This section presents the basic KAC construction for a
single data owner using asymmetric bilinear pairings.
As mentioned in Section 2, we assume the existence
of equi-prime order (for a λ-bit prime q) elliptic curve
subgroups G1 and G2, along with their generators P and
Q. We also assume the existence of a multiplicative cyclic
group GT , also of order q with identity element 1. Finally,
we assume there exists an asymmetric bilinear pairing
e : G1 × G2 −→ GT . The notations used in the forthcoming
discussion are already introduced in Section 2.

SetUp(1λ, n): Randomly pick α ∈ Zq . Output the system
parameter as param = (P,Q, YP,α,n, YQ,α,n). Discard α.

KeyGen(): Randomly pick γ ∈ Zq . Set the master secret key
msk to γ. Let PK1 = γP and PK2 = γQ. Set the public
key PK = (PK1, PK2). Output (msk, PK).

Encrypt(param,PK, i,M): For a message M ∈ GT be-
longing to class i ∈ {1, 2, · · · , n}, randomly choose t ∈ Zq .
Output the ciphertext C as

C = (c0, c1, c2) = (tQ, t(PK2 +Qi),M · e(Pn, tQ1))

Extract(param,msk,S): For the subset of class indices S ,
the aggregate key is computed as

KS = msk
∑
j∈S

Pn+1−j = γ
∑
j∈S

Pn+1−j

Note that this is indirectly equivalent to setting KS to∑
j∈S α

n+1−jPK1.

Decrypt(param, C, i,KS): Let C = (c0, c1, c2). If i /∈ S ,
output ⊥. Otherwise, set

aS =
∑

j∈S,j 6=i
Pn+1−j+i

bS =
∑
j∈S

Pn+1−j

and return the decrypted message M̂ as:

M̂ = c2 ·
e(KS + aS , c0)

e(bS , c1)

Observe that the above KAC construction is independent of
the manner in which a data owner chooses to organize her
data classes. Any KAC construction can support hierarchical
data structures, since a data owner can create an aggregate
key corresponding to all the data classes rooted at any
internal node, which is then broadcast to the target user
group.

3.2 Correctness
The proof of correctness of the basic KAC scheme is pre-
sented next.

M̂ = c2.
e(KS +

∑
j∈S,j 6=i Pn+1−j+i, c0)

e(
∑

j∈S Pn+1−j , c1)

= c2.
e(
∑

j∈S γPn+1−j +
∑

j∈S,j 6=i Pn+1−j+i, tQ)

e(
∑

j∈S Pn+1−j , t(PK2 +Qi))

= c2.
e(
∑

j∈S γPn+1−j , tQ)e(
∑

j∈S(Pn+1−j+i)− Pn+1, tQ)

e(
∑

j∈S Pn+1−j , tPK2)e(
∑

j∈S Pn+1−j , tQi))

= c2.
e(
∑

j∈S Pn+1−j+i, tQ)

e(Pn+1, tQ)e(
∑

j∈S Pn+1−j , tQi))

= c2.
e(
∑

j∈S Pn+1−j+i, tQ)

e(Pn+1, tQ)e(
∑

j∈S Pn+1−j+i, tQ))

=M.
e(Pn, tQ1)

e(Pn+1, tQ)

=M

3.3 Semantic Security
We now formally prove the CPA security of the basic KAC.
We begin by stating the following theorem.

Theorem 1. Let G1 and G2 be bilinear elliptic curve subgroups of
prime order q. For any positive integer n, the basic KAC handling
n data classes is (τ, ε, n) CPA secure if the asymmetric decision
(τ, ε, n)-BDHE assumption holds in (G1,G2).

Proof: LetA be a τ -time adversary such that |AdvA,n− 1
2 | > ε

for a KAC system parameterized with a given n. We build
an algorithm B that has advantage at least ε in solving
the asymmetric n-BDHE problem in (G1,G2). Algorithm
B takes as input a random asymmetric n-BDHE challenge
(H, I, Z) (where I = (P,Q, YP,α,n, YQ,α,n) and Z is either
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e(Pn+1, H) or a random value in GT ), and proceeds as
follows.

Init: B runs A and receives the set S of message classes that
A wishes to be challenged on. B then randomly chooses a
message class i ∈ S and lets A know of this choice.

SetUp: B should generate the public param and the public
key PK and provide them to A. They are generated as
follows.

• B sets param is as ((P,Q, YP,α,n, YQ,α,n)).
• B randomly chooses γ ∈ Zq and sets PK =

(PK1, PK2), where

PK1 = γP − Pi
PK2 = γQ−Qi

Note that this is equivalent to setting msk as γ − αi.

B also computes the collusion aggregate key KS as

KS =
∑
j /∈S

(γPn+1−j − (Pn+1−j+i))

and provides it to A. Note that this is indirectly equivalent
to setting

KS =
∑
j /∈S

αn+1−j(γP − Pi)

=
∑
j /∈S

αn+1−jPK1

as desired. Note that, B is aware that i /∈ S (implying i 6= j),
and hence has all the resources to compute KS .

Since P , Q, α and γ are all chosen uniformly at random,
the public parameters and the public key have an identical
distribution to that in the actual construction.

Challenge:A picks at random two messagesM0 andM1 in
class i, and gives them to B. In response, B randomly picks
b ∈ {0, 1}, and sets the challenge to A as (C∗,M0,M1),
where C∗ = (H, γH,Mb.Z). We claim that when Z =
e(Pn+1, H) (i.e. the input to B is a valid asymmetric n-
BDHE tuple), then (C∗,M0,M1) is a valid challenge toA as
in a real attack. To see this, writeH = tQ for some unknown
t ∈ Zq . Then we have

γH = t(γQ−Qi +Qi)

= t(PK2 +Qi)

Mb.Z =Mb · e(Pn+1, tQ)

=Mbe(Pn, tQ1)

Thus, by definition, C∗ is a valid encryption of the message
Mb in class i and hence, (C∗,M0,M1) is a valid challenge
to A.

Guess: The adversary A outputs a guess b′ of b. If b′ = b, B
outputs 0 (indicating that Z = e(Pn+1, H)). Otherwise, it
outputs 1 (indicating that Z is a random element in ZT ).

We now analyze the probability that B gives a cor-
rect output. If (I, Z) is sampled from R′BDHE, we have
Pr[B(I, Z) = 0] = 1

2 , while if (I, Z) is sampled from L′BDHE,

|Pr[B(I, Z) = 0]− 1
2 | = |AdvA,n′−

1
2 | ≥ ε. This implies that B

has advantage at least ε in solving the asymmetric n-BDHE
problem in (G1,G2). This concludes the proof of Theorem
1. Note that the proof is in the standard model does not
require the use of random oracles.

3.4 An Alternative Combination of the Message and the
Secret
All our KAC constructions assume that any class of plaintext
messagesMmay be efficiently embedded as elements in the
multiplicative groupGT . This , however, may not be true for
certain classes of data such as multimedia. A possible work
around is to hash the secret value ρ used for encrypting
M using a collision resistant hash function H , and then
outputting M � H(ρ) in the ciphertext (here � denotes
an appropriate operator). Additionally, it is preferable to
choose H from the family of smooth projective hash functions
[32], that do not require the use of random oracles to
prove security and can be efficiently designed to be collision
resistant [33].

4 CHOSEN CIPHERTEXT SECURE BASIC KAC
We now demonstrate how to modify the basic KAC pro-
posed in Section 3.1 to obtain chosen ciphertext security.
The resulting KAC system is proven to be CCA secure in
the standard model without using random oracles. To the
best of our knowledge, this is the first CCA secure KAC
construction proposed in the cryptographic literature.

4.1 Additional Requirements for CCA Security
We have the following additional requirements for the CCA
secure basic KAC:

• A signature scheme (SigKeyGen, Sign, V erify) as
defined in Section 2.6.

• A collision resistant hash function for mapping veri-
fication keys to Zq .

For simplicity of presentation, we assume here that the
signature verification keys are encoded as elements of Zq .
We avoid any further mention of the hash function in the
forthcoming discussion, since it is implicitly assumed that
any signature value we refer to is essentially the hash value
corresponding to the original signature.

4.2 Construction
We now present the CCA secure construction for basic
KAC. The security of our construction for n data classes
is based on the asymmetric (n + 1)-BDHE assumption,
instead of the asymmetric n-BDHE assumption (as was for
the semantically secure basic construction). For consistency
of notation, we describe the construction for n − 1 users
instead of n users, such that the security assumption is still
the asymmetric n-BDHE assumption as before.

SetUp(1λ, n−1): Randomly pick α ∈ Zq . Output the system
parameter as param = (P,Q, YP,α,n, YQ,α,n)). Discard α.

KeyGen(): Randomly pick γ ∈ Zq . Set the master secret key
msk to γ. Let PK1 = γP and PK2 = γQ. Set the public
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key PK = (PK1, PK2). Output (msk, PK).

Encrypt(param,PK, i,M): Run the SigKeyGen algorithm
to obtain a signature signing key KSIG and a verification
key VSIG ∈ Zq . Then, randomly choose t ∈ Zq and set

c0 = tQ and c1 = t(PK2 +Qi + VSIGQn)

c2 = M · e(Pn, tQ1)

C = (C′ = (c0, c1, c2), Sign(C′,KSIG), VSIG)

Output the ciphertext C.

Extract(param,msk,S): For the subset of class indices S ,
the aggregate key is computed as

KS = msk
∑
j∈S

Pn+1−j = γ
∑
j∈S

Pn+1−j

Decrypt(param, C, i,S,KS): Let C = (C′, σ, VSIG). Verify
that σ is a valid signature of C′ under the key VSIG. If not,
output ⊥. Also, if i /∈ S , output ⊥. Otherwise, set

SIGS =
∑
j∈S

VSIGP2n+1−j

aS =
∑

j∈S,j 6=i
Pn+1−j+i

bS =
∑
j∈S

Pn+1−j

Note that these can be computed as 1 ≤ i, j ≤ n − 1. Next,
pick a random w ∈ Zq and set two entities ĥ1 and ĥ2 as

ĥ1 = KS + SIGS + aS + w(PK1 + Pi + VSIGPn)

ĥ2 = bS + wP

Output the decrypted message

M̂ = c2 ·
e(ĥ1, c0)

e(ĥ2, c1)

The proof of correctness of this scheme is very similar to
the proof for the basic dynamic KAC scheme presented in
Section 3.1. Note that the ciphertext size is still constant
and everything else, including the public and private pa-
rameters, as well as the aggregate key, remains unchanged.
The main change from the original scheme is in the fact
that decryption requires a randomization value w ∈ Zq .
This randomization makes sure that that the pair (ĥ1, ĥ2)
is chosen from the following distribution

(x(PK1 + Pi + VSIGPn)− Pn+1, xP )

where x is chosen uniformly from Zq . This can be readily
observed by setting x = w+

∑
j∈S α

n+1−j (if w is uniformly
random in Zq , so is x). This randomization is a vital aspect from
the point of view of CCA-security. Note that the distribution
(ĥ1, ĥ2) depends only on the message class i for the message
m to be decrypted and is independent of the subset S
to which i belongs. However, decryption using only this
distribution (that is without KS ) requires the knowledge of
Pn+1, which is not available and is hard to compute from
param under the BDHE assumption in G1.

Observe that, as in the basic construction, the public
parameter for the CCA secure construction also comprises

of O(n) group elements, and the aggregate key KS as
well as the public key PK consist of O(1) group elements
each. Despite the presence of the additional components
from the signature scheme, the ciphertext size is still O(1)
group elements. Thus overall, the space complexities for
various components of the scheme remain as in the basic
construction.

4.3 Security
We state and prove the following theorem:

Theorem 2. Let G1 and G2 be bilinear elliptic curve subgroups
of prime order q. For any positive integer n, the modified basic
KAC handling n− 1 data classes is (τ, ε1 + ε2, n− 1, qD) CCA-
secure if the asymmetric decision (τ, ε1, n)-BDHE assumption
holds in (G1,G2) and the signature scheme is (τ, ε2, 1) strongly
existentially unforgeable.

Proof: Let A be a τ -time adversary such that |AdvA,n−1− 1
2 |

> ε1 + ε2. We build an algorithm B that has advantage at
least ε1 in solving the asymmetric n-BDHE problem in G.
Algorithm B takes as input a random asymmetric n-BDHE
challenge (H, I, Z) (where I = (H,P,Q, YP,α,n, YQ,α,n),
and Z is either e(Pn+1, H) or a random value in GT ), and
proceeds as follows.

Init: B runs A and receives the set S∗ of message classes
thatAwishes to be challenged on. B then randomly chooses
a message class i ∈ S∗ and lets A know of this choice.

SetUp: B should generate the public param and the pub-
lic key PK, and provide them to A. B first runs the
SigKeyGen algorithm to obtain a signature signing key
K∗SIG and a corresponding verification key V ∗SIG ∈ Zq . B
generates the following:

• param is set as (P,Q, YP,α,n, YQ,α,n).
• Set PK = (PK1, PK2), where PK1 and PK2 are

computed as

PK1 = γP − V ∗SIGPn − Pi
PK2 = γQ− V ∗SIGQn −Qi

for γ chosen uniformly at random from Zq . Note that
this is equivalent to setting msk = γ −αi−αnV ∗SIG.

B computes the collusion aggregate key KS∗ as

KS∗ =
∑
j /∈S∗

(γPn+1−j − V ∗SIGP2n+1−j − Pn+1−j+i)

Note thatKS∗ is equal to
∑
j /∈S∗ α

n+1−jPK1, in accordance
with the specification provided by the scheme. Moreover,
B is aware that i /∈ S∗ (implying i 6= j). Also, j 6= n as
1 ≤ j ≤ n − 1. Hence, B has all the resources to compute
KS∗ .

Since P , Q, α, and γ are chosen uniformly at random,
the public parameters and the public key have an identical
distribution to that in the actual construction.

Query Phase 1: A now issues decryption queries. Let
(j, C) be a decryption query where j ∈ S∗. Let C =
((c0, c1, c2), σ, VSIG). B first runs V erify to check if the
signature σ is valid on (c0, c1, c2) using VSIG. If invalid,
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B returns ⊥. If VSIG = V ∗SIG, B outputs a random bit
b ∈ {0, 1} and aborts the simulation. We show later that
the probability of this event is negligible under the assump-
tion that the signature is strongly existentially unforgeable.
Otherwise, B picks a random x ∈ Zq and sets

ĥ0 = (VSIG − V ∗SIG)Pn + Pj − Pi
ĥ′0 = (VSIG − V ∗SIG)

−1
(Pj+1 − Pi+1)

ĥ2 = xP + (VSIG − V ∗SIG)
−1
P1

ĥ1 = γĥ2 + xĥ0 + ĥ′0

B then responds with the decrypted message

M′ = c2 ·
e(ĥ1, c0)

e(ĥ2, c1)

It can be easily shown by choosing x′ = x +
α(VSIG − V ∗SIG)

−1 that B’s response is a valid decryption
of the ciphertext C queried by A, as in a real attack game.

Challenge: A picks at random two messages M0 and M1

from the set of possible plaintext messages belonging to
class i and provides them to B. B in turn randomly picks
b ∈ {0, 1}, and sets

C′ = (H, γH,Mb · Z)
C∗ = (C, Sign(C′,K∗SIG), V ∗SIG)

The challenge posed to A is (C∗,M0,M1). It is easy to
show that when Z = e(Pn+1, H), (C∗,M0,M1) is a valid
challenge to A as in a real attack.

Query Phase 2: Same as in Query Phase 1.

Guess: The adversary A outputs a guess b′ of b. If b′ = b, B
outputs 0. Otherwise, it outputs 1.

Quite evidently, if (I, Z) is sampled from R′BDHE,
Pr[B(I, Z) = 0] = 1

2 . Let abort be the event that B aborted
the simulation. Now when (I, Z) is sampled from L′BDHE,
we have

|Pr[B(I, Z) = 0]− 1

2
| > (ε1 + ε2)− Pr[abort]

This essentially implies that B has advantage at least
ε1 + ε2 − Pr[abort] in solving the asymmetric n-BDHE
problem in (G1,G2).

It is left to bound the probability that B aborts the simulation
upon one of the decryption queries by A. We claim that
Pr[abort] < ε2; otherwise one can use A to forge signatures
with probability at least ε2. A very brief proof of this may be
stated as follows. We may construct a simulator that knows
the master secret key and receives K∗SIG as a challenge
in an existential forgery game. A can then cause an abort
by producing a query that leads to an existential forgery
under K∗SIG on some ciphertext. Our simulator uses this
forgery to win the existential forgery game. Only one chosen
message query is made by the adversary during the game
to generate the signature corresponding to the challenge
ciphertext. Thus, Pr[abort] < ε2, implying B has advantage
at least ε1 in solving the asymmetric n-BDHE problem in
(G1,G2). This completes the proof of Theorem 2.

5 EXTENDED KAC WITH AGGREGATE KEY
BROADCAST

The KAC constructions presented in Sections 3 and 4 require
the aggregate keys to be transmitted to data users via secure
channels. However, in a real world data sharing setup
with m data users and m′ data owners, such a solution
requires the existence of O(mm′) secure channels, which is
extremely costly. In addition, the dynamically growing na-
ture of the network implies that the requirement for secure
channels increases in a multiplicative fashion with every
new data owner/user joining the network. This makes the
basic KAC scheme inconvenient for large scale deployment
despite its cryptographically secure aggregate key genera-
tion properties.

In this section, we develop a novel mechanism for
public-key based aggregate key distribution that reduces the
secure channel requirement toO(m+m′) fromO(mm′). We
use broadcast encryption, which is a well known technique
in public key cryptography, to efficiently distribute the
aggregate keys among multiple users in a secure fashion.
Our extended KAC construction combines the basic KAC
instance presented in Section 3.1 with the public key based
broadcast encryption system presented in [7] to build a fully
public key based online data sharing scheme.

5.1 The Framework for Extended KAC

The framework for extended KAC with aggregate key
broadcast is presented below:

1) SetUp(1λ, n,m): Takes as input the number of data
classes n, the number of users m and the security
parameter λ. Outputs the public parameter param.

2) OwnerKeyGen(): Outputs the public key PK, the
master-secret key msk and the broadcast secret key
bsk for a data owner registering in the system.

3) OwnerEncrypt(param,PK, i,M): Takes as input a
data class i ∈ {1, · · · , n} and the plaintext dataM.
Outputs a partially encrypted ciphertext C′. Note
that C′ is not the final ciphertext and is not exposed
to the outside world. It is sent to the system admin-
istrator via a secure channel for further modification
as described next. Note here that any instantiation of
this scheme must ensure that the partial ciphertext
C′ is protected using suitable randomizations so as
to leak nothing about the underlying plaintext data
M during transmission to the system administrator.

4) SystemEncrypt(C′,msk, bsk): Takes as input the
partially encrypted ciphertext C′, the master secret
key msk and the broadcast secret key bsk. Outputs
the final ciphertext C whih is made available on
the cloud. This step is carried out by the system
administrator, who is a trusted third party.

5) UserKeyGen(param,msk, î): Takes as input the
data user id î ∈ {1, · · · ,m} and outputs the cor-
responding secret key dî.

6) Extract(param,msk,S): Takes as input the mas-
ter secret key msk and a subset of data classes
S ⊆ {1, · · · , n}. Computes the aggregate key KS
for all encrypted messages belonging to these subset
of classes, and passes it as input to the Broadcast
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algorithm for generating the broadcast aggregate
key.

7) Broadcast(param,KS , Ŝ, PK, bsk): Takes as input
the aggregate key KS and the target subset of users
Ŝ ⊆ {1, · · · ,m}. Outputs a single broadcast aggregate
key K(S,Ŝ) that allows any user î ∈ Ŝ to decrypt all
encrypted data/messages classified into any class
i ∈ S .

8) Decrypt(param, C,K(S,Ŝ), i, î, dî,S, Ŝ): The de-
cryption algorithm now takes, besides the ciphertext
C and the corresponding data class i ∈ S , a valid
user id î ∈ Ŝ . It also takes as input the broadcast
aggregate key K(S,Ŝ) and the secret key dî. The
algorithm outputs the decrypted message.

We note that the secure channel requirement is one per
data owner (in OwnerEncrypt) and one per data user (in
UserKeyGen). Thus the overall secure channel requirement
is O(m+m′). Observe that the main challenge to be tackled
in realizing this scheme is combining the original aggregate
key KS with the broadcast secret to obtain the final broad-
cast aggregate key K(S,Ŝ).

5.2 Security of Extended KAC: A Game Based Frame-
work
We also define the formal framework for proving the se-
curity of the extended KAC proposed in Section 5.1 via
the following game between an attack algorithm A and a
challenger B:

1) Init: Algorithm A begins by outputting a set
S∗ ⊆ {1, 2, · · · , n} of data classes and a set Ŝ∗ ⊆
{1, 2, · · · ,m} of users that it wishes to attack. Chal-
lenger B randomly chooses a message class i ∈ S∗.

2) SetUp: B sets up the KAC system by generating the
public parameter param, the public key PK and
the master secret key msk and the broadcast secret
key bsk. Since collusion attacks are allowed in our
framework, B furnishes A with all the private user
keys dĵ for ĵ /∈ Ŝ∗. In addition, A also gets the
aggregate key K(S∗,Ŝ∗) that allows any user in Ŝ∗

to decrypt any message class j /∈ S∗.
3) Query Phase 1: A adaptively issues decryption

queries q1, · · · , qv where a decryption query com-
prises of the tuple (j, C), where j ∈ S∗. The chal-
lenger responds with a valid decryption of C.

4) Challenge: A picks at random two messages M0

andM1 from the set of possible plaintext messages
belonging to class i and provides them to B. To
generate the challenge, B randomly picks b ∈ {0, 1},
and sets the challenge to A as (C∗,M0,M1), where
C∗ = Encrypt(param,PK, i,Mb).

5) Query Phase 2: A continues to adaptively issue de-
cryption queries qv+1, · · · , qQD

where a decryption
query now comprises of the tuple (j, C) under the
restriction that C 6= C∗. B responds as in phase 1.

6) Guess: The adversary A outputs a guess b′ of b. If
b′ = b, A wins the game.

The game above models an attack involving two differ-
ent kinds of collusion. The first collusion is by all users not

in Ŝ∗ who collude to try and expose an aggregate key that
is broadcast for users in Ŝ∗ only. The second collusion is by
users in Ŝ∗ who collude (by compromising the knowledge
of the aggregate key for different subsets) to try and expose a
message class in S∗. The CPA and CCA security definitions
of the extended scheme are similar to that for the basic
scheme described in Section 2.2.

6 CONSTRUCTION FOR EXTENDED KAC
In this section, we present a construction to realize the
extended KAC scheme described in Section 5.1. The con-
struction is inspired by techniques presented in [7]. Our
construction uses a core building block that supports B data
classes andB data users. The idea is to run (A×Â) instances
of this block in parallel, such that the overall system can
handle n = A × B data classes and m = Â × B data users
The building blocks share the same set of public parameters,
but use their own set of private and public key components.
The construction trades off the public parameter size with
the public key size and the aggregate key size, while still
maintaining constant ciphertext overhead. The construction
is inspired by the two-tier broadcast encryption construction
presented in [7].

6.1 The Construction

The extended KAC construction is presented below:

SetUpB(1λ, n,m): Randomly pick α ∈ Zq . Output the
system parameter as

param = (P,Q, YP,α,B , YQ,α,B)

Discard α. Compute A = dn/Be and Â = dm/Be.

OwnerKeyGen(): Randomly pick two sets of values
γ11 , · · · , γA1 ∈ Zq , and γ12 , · · · , γÂ2 ∈ Zq . Set

msk1 =
(
γ11 , · · · , γA1

)
and msk2 =

(
γ12 , · · · , γÂ2

)
Next, define for 1 ≤ a ≤ A and 1 ≤ â ≤ Â

PKa
1 = γa1P , PKa

2 = γa1Q

PK â
3 = γâ2P , PK â

4 = γâ2Q

and set

PK1 =
(
PK1

1 , · · · , PKA
1

)
PK2 =

(
PK1

2 , · · · , PKA
2

)
PK3 =

(
PK1

3 , · · · , PKÂ
3

)
PK4 =

(
PK1

4 , · · · , PKÂ
4

)
Output the master secret key as msk = (msk1,msk2) and
the public key as PK = (PK1, PK2, PK3, PK4). Also
output the secret broadcast key bsk = γ3 chosen uniformly
at random from Zq .

OwnerEncrypt(param,PK, i,M): Compute a = di/Be
and b = i mod B+1. Let PKa

2 be the ath component of PK2.
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Randomly choose t ∈ Zq and output the partial ciphertext
C′ as

C′ = (c0, c
′
1, c2, c3)

= (tQ, tPKa
2 , t(PK

a
2 +Qb),M · e(PB , tQ1))

SystemEncrypt(C′, i,msk, bsk): Takes as input the partially
encrypted ciphertext C′ = (c0, c

′
1, c2, c3), the master secret

key msk = (msk1,msk2) and the broadcast secret key bsk.
The additional information required here is the class id i.
Let a = di/Be and mska1 be the ath component of msk1.
Output the final ciphertext C as:

C = (c0, c1, c2, c3)

= (c0, c
′
1 − (bsk ·mska1)Q, c2, c3)

= (tQ, (t− bsk)PKa
2 , t(PK

a
2 +Qb),M · e(PB , tQ1))

UserKeyGen(param,msk, î): Compute â = d̂i/Be and
b̂ = î mod B + 1. Let mskâ2 be the âth component of msk2.
Output the private key for user with id î as:

dî = mskâ2Pb̂ = γâ2Pb̂

Note that this is indirectly equivalent to setting dî to
αb̂PK â

3 .

Extract(param,msk,S): Let msk1 = (msk11, · · · ,mskA1 ).
For the subset of class indices S and 1 ≤ a ≤ A, define

Sa = {i mod B + 1|i ∈ S, di/Be = a}

Next, for 1 ≤ a ≤ A, compute

Ka
S = mska1

∑
j∈Sa

PB+1−j = γa1
∑
j∈Sa

PB+1−j

Finally, output
KS = (K1

S , · · · ,KA
S )

Note that the the aggregate key now consists of A group
elements.

Broadcast(param,KS , Ŝ, PK, bsk): The aggregate key
KS = (K1

S , · · · ,KA
S ) is broadcast to all users in Ŝ as

follows. For the subset of user ids Ŝ and 1 ≤ â ≤ Â, define

Ŝâ = {̂i mod B + 1|̂i ∈ Ŝ, d̂i/Be = â}

Randomly choose t̂ ∈ Gq and set for 1 ≤ â ≤ Â

bŜâ =
∑
ĵ∈Ŝâ

QB+1−ĵ

Output the broadcast aggregate key as:

K(S,Ŝ) = (t̂Q,K1,K2)

where

K1 =
(
t̂
(
PK1

4 + bŜ1

)
, · · · , t̂

(
PKÂ

4 + bŜÂ

))
K2 =

(
{e(PB , t̂Q1) · e(Ka

S , Q)bsk}1≤a≤A
)

Note that K(S,Ŝ) now comprises of O(A + Â) group
elements.

Decrypt(param, C,K(S,Ŝ), i, î, dî,S, Ŝ): If i /∈ S or î /∈
Ŝ , output ⊥. Otherwise, compute a = di/Be and b =
i mod B + 1 and set:

aSa =
∑

j∈Sa,j 6=b
PB+1−j+b

bSa =
∑
j∈Sa

PB+1−j

Also, compute â = d̂i/Be and b̂ = î mod B + 1 and set:

aŜâ =
∑

ĵ∈Ŝâ,ĵ 6=b̂

PB+1−ĵ+b̂

Let C = (c0, c1, c2, c3) and

K(S,Ŝ) =
(
k̂0,
(
k̂11, · · · , k̂Â1

)
,
(
k̂12, · · · , k̂A2

))
Return the decrypted message M̂ as:

M̂ = c3 · k̂a2 ·
(
e (bSa , c1) e (aSa , c0)

e (bSa , c2)

)
·

e
(
dî + aŜâ , k̂0

)
e
(
Pb̂, k̂

â
1

)


Note that the aforementioned framework is for a single
data owner. For m′ data owners, m′ such frameworks will
need to be instantiated. The proof of correctness for this
construction is similar to that for the basic KAC construction
and is hence avoided.

6.2 Semantic Security

For the non-adaptive CPA security of the generalized ex-
tended KAC construction, we state the following theorem.

Theorem 3. Let G1 and G2 be bilinear elliptic curve subgroups
of prime order q. For any triple of positive integers (n,m,B)
such that B ≤ n,m, the generalized extended KAC handling n
data classes andm users is (τ, ε, B) CPA secure if the asymmetric
decision (τ, ε, B,B)-BDHE assumption holds in (G1,G2).

The proof of this theorem is similar to that for Theorem
1. Finally we note that the extended KAC construction may
also be extended using techniques similar to those in Section
4 to achieve CCA security.

6.3 Performance and Efficiency

The choice of A, A′ and B play an important role in
system performance. As is clear from the construction, the
ciphertext always consists of a constant number of group
elements. The public parameter comprises of O(B) group
elements, while the broadcast aggregate key K(S,Ŝ) as well

as the public key PK consist of O(A + Â) group elements
each. Thus choosing a smaller value of B is useful for
applications requiring low overhead aggregate keys. Table
2 summarizes the theoretical space complexities for the
generalized scheme in the order notation. Note that any
group element in G1,G2 and GT is assumed to have O(η1),
O(η2) and O(ηT ) space complexity respectively.
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TABLE 2: Space Complexities for Various Components : Generalized Extended
KAC

Component Space Complexity
param O(B(η1 + η2))

msk O((A+ Â) log q)

PK O(Aη1 + Âη2)
bsk O(log q)
C O(η2 + ηT )
dî O(η2)
KS O(Aη1)

K(S,Ŝ) O(
(
Â+ 1

)
η2 +AηT )

6.4 Addition and Revocation in Multi-User Environ-
ments

Addition of new users and revocation of existing ones is
of particular significance in multi-user environments where
the number of users, as well as user access rights are
expected to change dynamically. We note here that addi-
tion of new users is easily handled in our extended KAC
construction by generating a new key for each newly added
user in the system, and ensuring that all future aggregate
key broadcast operations take into account the access rights
of the new users in addition to the already existing ones.
Also, observe that addition of new users does not require the
system to re-generate the core building block of size B × B
in the extended construction. It is only the parameter Â that
increases on the addition of new users, which is essentially
equivalent to instantiating more instances of the same core
building block. It follows that neither the public parameters
nor the existing owner/user keys need to be updated in any
way. Thus combination with broadcast encryption ensures
that the system scales to larger number of users efficiently.

User revocation is also achieved without any additional
cost since it is built into the very definition of broadcast
encryption systems. Suppose that at a certain point of time,
a data owner wishes to revoke the access of a particular data
user to all future documents that she puts on the cloud.
She simply asks the system to exclude the identity of this
data user from all future broadcast operations, implying that
the excluded data user can no longer access aggregate keys
corresponding to any data that the data owner puts on the
cloud in future. Clearly, this requires no extra cost, and the
corresponding security guarantee follows from the collusion
resistance property of the extended KAC construction. In
particular, since any aggregate key that the revoked user
had access to does not cover the indices of any of the future
documents, the collusion resistance property ensures that
the knowledge of prior aggregate keys does not compro-
mise the knowledge of these new documents. Of course,
the revoked user continues to have its designated access
to the previously existing documents, but she could have
downloaded and saved them prior to revocation anyway;
so revoking user access to existing documents seems super-
fluous. In case the data owner wishes to modify an existing
document, she could use a different index for it to ensure
that a revoked user cannot access it in the future.

Revocation is often associated with the presence of
rogue/compromised users that threaten the security of a
system. Tracing such users is, however, more involved and
is best handled using traitor-tracing systems [34]. Assume
that a data owner broadcasts the aggregate key for a certain

TABLE 3: Timing Results for Primitive Operations

Primitive Operation Time Taken (in seconds)
Point Addition 7.01× 10−6

Scalar Multiplication 6.56× 10−4

Group Multiplication 9.80× 10−6

Bilinear Pairing 2.40× 10−2

TABLE 4: Inter-VM Communication over the Network

Type of Element Size Transfer Time
(bytes) (milliseconds)

G1 40 0.137
G2 80 0.210
GT 240 0.291

subset S of plaintext messages to a set Ŝ of legitimate users.
The risk for the data owner is that a malicious agent could
hack a user in this recipient set Ŝ , extract its secret key
and build a publicly available decoder that allows anyone
outside the intended recipient set to extract the plaintext
content for themselves. This is where a traitor tracing system
comes handy because it allows a data owner to run a
tracing algorithm that interacts with the publicly available
malicious decoder to identify at least one compromised user
index, whose access can then be revoked. A detailed de-
scription of how a traitor tracing scheme may be efficiently
combined with the extended KAC framework is outside the
scope of the current work. We point out, however, that there
exist several propositions in the literature for combining
traitor-tracing with broadcast encryption [35], [36] with
varying efficiency that could be used in the extended KAC
framework.

.

7 EXPERIMENTAL RESULTS ON THE CLOUD

This section presents an experimental validation of the per-
formance and efficiency of the extended KAC construction
with broadcast aggregate key in a public cloud based set-
up consisting of three VMs - a data owner client VM that
performed the Encrypt operations, the data user client VM
that performed the Decrypt operation, and a trusted third
party server VM that performed the rest of the operations.
Each of the two client VMs were equipped with 1GB RAM
each, while the server VM was equipped with 4GB RAM
since it performed the bulk of the computational operations.
There have been several efficient software implementations
for bilinear pairings reported in the literature [37], [38] al-
though the corresponding implementation details are not al-
ways available. In our implementation, we use the Pairing-
Based Cryptography [39] library, which is an open-source
C library, and provides efficient APIs for asymmetric prime
order bilinear pairings and elliptic curve operations over
a “Type-F” curve, which belongs to the family of Barreto-
Naehrig Curves [40]. TCP-based network communication
between the VMs was achieved via standard BSD socket
APIs provided by the socket module in python. In re-
sponse to each successful inter VM transfer from the server
to the client, the client responded with a single byte of
acknowledgement.

We present a case study for an extended KAC system
that supports n = 1000 documents and m = 1000 users.
First, we assume the simplest possible configuration where
only a single instance of the core B×B block is instantiated
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forB = 1000. Our case study also samples two random sub-
sets S and Ŝ of size 500 and 500 respectively. This essentially
means that the system is broadcasting the aggregate key for
500 documents to 500 users. We first enumerate in Table 3
the time taken for each primitive function - namely point
addition in G1 and G2, scalar multiplications in G1 and G2,
group operations in GT , and bilinear pairing computations.
We do not present the timing for exponentiations in GT ,
since all such operations are generally in conjunction with
pairing, and are therefore simulated via a scalar multipli-
cation in either G1 or G2, followed by the application of
a pairing. Also, quite evidently, the timing overhead for
pairings is much larger than most other operations and is
hence expected to dominate the time required for various
KAC algorithms. In Table 5 we analyze the expected time
complexity for the various algorithms in extended KAC in
this scenario, based on the number of primitive operations
in each algorithm. We then compare it with the actual time
required for each algorithm in our simulated framework for
extended KAC. We point out that the additional overhead
over the expected time required for each algorithm may
be attributed to network delays and the time required to
serialize various group elements for input and output. The
inter-VM communication specifics for a single element in
each of the groups G1, G2 and GT , along with their sizes,
are presented separately in Table 4. This excludes a standard
RTT of 29 microseconds for receipt of the acknowledgement
from the client.

We next evaluate the memory requirement of the system
for the same case study with 1000 documents and 1000
users, using different combination of values for A, A′ and B
in order to highlight the trade-off resulting from various
choices of these system parameters. The results are pre-
sented in Table 6. We note that the memory requirement
results are in accordance with the theoretical expectations.
With increase in B, param takes greater memory, while
the memory requirements for msk, PK, KS and K(S,Ŝ)
increase.

For a better understanding of Table 6, consider the sixth
row. This row corresponds to a setting of the extended KAC
system for n = 1000 documents and m = 1000 users,
with the aggregate key for 500 documents being broadcast
to 500 users. The core block is of size 100 × 100 (that is,
B = 100) and we instantiate 10 × 10 instances of this core
block (that is, A = Â = 10). The public parameter param in
this case consists of 200 elements each from G1 and G2 and
hence has size 24 KB. The master secret key msk consists
of 20 random elements from Zq and consequently has size
400 bytes. The public key PK consists of 20 elements each
from G1 and G2, and has size 2.4 KB. The aggregate key
KS consists of 10 elements from G1 and hence has size
400 bytes. The broadcast aggregate key K(S,Ŝ) consists of
11 group elements from G2 and 10 group elements from
GT , and hence has size 2.08 KB. Finally, the length of the
ciphertext is not mentioned in the table because it is constant
at 480 bytes for all combinations of

(
B,A, Â

)
. Refer Table

2 and Table 4 for checking the number of elements and
size of each element respectively in the above discussion.
We also point out here that the size of KS and K(S,Ŝ) are
independent of the size of the target document and user

TABLE 6: Memory Requirement Results: Trade-off over various choices of B, A
and Â

B A Â
param msk PK KS K(S,Ŝ)

(in bytes) (in bytes) (in bytes) (in bytes) (in bytes)

1 1000 1000 240 80000 480000 80000 200080
2 500 500 480 40000 240000 40000 100080
5 200 200 1200 8000 48000 8000 40080

10 100 100 2400 4000 24000 4000 20080
50 20 20 12000 800 4800 800 4080

100 10 10 24000 400 2400 400 2080
500 2 2 120000 80 480 80 480

1000 1 1 240000 40 240 40 280

subsets S and Ŝ respectively.

8 CONCLUSIONS AND DISCUSSIONS

In this paper, we have proposed an efficiently imple-
mentable version of the basic key-aggregate cryptosystem
(KAC) in [6] with low overhead ciphertexts and aggregate
keys, using asymmetric bilinear pairings. Our construction
serves as an efficient solution for several data sharing appli-
cations on the cloud, including collaborative data sharing,
product license distribution and medical data sharing. We
have proved our construction to be fully collusion resistant
and semantically secure against a non-adaptive adversary
under appropriate security assumptions. We have then
demonstrated how this construction may be modified to
achieve CCA-secure construction, which is, to the best of
our knowledge, the first CCA secure KAC construction in
the cryptographic literature. We have further demonstrated
how the basic KAC framework may be efficiently extended
and generalized for securely broadcasting the aggregate
key among multiple data users in a real-life data sharing
environment. This provides a crucial pathway in designing
a scalable fully public-key based online data sharing scheme
for large-scale deployment on the cloud. We have presented
simulation results to validate the space and time complexity
requirements for our scheme. The results establish that KAC
with aggregate key broadcast outperforms other existing
secure data sharing schemes in terms of performance and
scalability.
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[33] Michel Abdalla, Céline Chevalier, and David Pointcheval. Smooth
projective hashing for conditionally extractable commitments. In
Advances in Cryptology-CRYPTO 2009, pages 671–689. Springer,
2009.

[34] Benny Chor, Amos Fiat, Moni Naor, and Benny Pinkas. Tracing
traitors. IEEE Trans. Information Theory, 46(3):893–910, 2000.

[35] Dan Boneh, Amit Sahai, and Brent Waters. Fully collusion resistant
traitor tracing with short ciphertexts and private keys. In Advances
in Cryptology - EUROCRYPT 2006, 25th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, St.
Petersburg, Russia, May 28 - June 1, 2006, Proceedings, pages 573–592,
2006.

[36] Dan Boneh and Moni Naor. Traitor tracing with constant size
ciphertext. In Proceedings of the 2008 ACM Conference on Computer
and Communications Security, CCS 2008, Alexandria, Virginia, USA,
October 27-31, 2008, pages 501–510, 2008.

[37] Chitchanok Chuengsatiansup, Michael Naehrig, Pance Ribarski,
and Peter Schwabe. Panda: Pairings and arithmetic. In Pairing-
Based Cryptography - Pairing 2013 - 6th International Conference,
Beijing, China, November 22-24, 2013, Revised Selected Papers, pages
229–250, 2013.

[38] Eric Zavattoni, Luis J. Dominguez Perez, Shigeo Mitsunari, Ana H.
Sánchez-Ramı́rez, Tadanori Teruya, and Francisco Rodrı́guez-
Henrı́quez. Software implementation of an attribute-based en-
cryption scheme. IEEE Trans. Computers, 64(5):1429–1441, 2015.

[39] Ben Lynn. The Pairing-Based Cryptography Library.
[40] Paulo SLM Barreto and Michael Naehrig. Pairing-friendly elliptic

curves of prime order. In Selected areas in cryptography, pages 319–
331. Springer, 2006.


