
1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2667662,
IEEE Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICE COMPUTING 1

Transactional Behavior Verification in
Business Process as a Service Configuration

Scott Bourne, Claudia Szabo, Member, IEEE , Quan Z. Sheng, Member, IEEE

Abstract—Business Process as a Service (BPaaS) is an emerging type of cloud service that offers configurable and executable
business processes to clients over the Internet. As BPaaS is still in early years of research, many open issues remain. Managing
the configuration of BPaaS builds on areas such as software product lines and configurable business processes. The problem has
concerns to consider from several perspectives, such as the different types of variable features, constraints between configuration
options, and satisfying the requirements provided by the client. In our approach, we use temporal logic templates to elicit
transactional requirements from clients that the configured service must adhere to. For formalizing constraints over configuration,
feature models are used. To manage all these concerns during BPaaS configuration, we develop a structured process that
applies formal methods while directing clients through specifying transactional requirements and selecting configurable features.
The Binary Decision Diagram (BDD) analysis is then used to verify that the selected configurable features do not violate any
constraints. Finally, model checking is applied to verify the configured service against the transactional requirement set. We
demonstrate the feasibility of our approach with several validation scenarios and performance evaluations.

Index Terms—Business Process as a Service, formal methods, verification, transactional requirements, model checking

F

1 INTRODUCTION

In recent years, cloud services have had dramatic
impacts in both the research [1] and industry [2] land-
scapes of service-oriented computing. Cloud comput-
ing has become a popular paradigm for delivering a
wide range of services, such as software applications,
computing capacity, storage, and virtual platforms [3].
Cloud service providers can offer these utilities to
clients over the Internet in a pay-by-use manner. The
distinctive properties of cloud services include:

• On-demand availability through public or private
network access, most commonly the Internet [3].

• Utilization of pooled resources such as servers,
applications, CPU time, or storage.

• Dynamic response to workload by elastically pro-
visioning and releasing resources [3][4].

• Configurability of service behavior of properties
to meet individual client requirements [5][6][7].

The traditional hierarchy of cloud service types
is comprised of three layers, where each layer can
provide the base (infrastructure or platform) for run-
ning services within the layer above [3]. Infrastruc-
ture as a Service (IaaS) is the bottom service layer,
providing access to virtualized physical resources,
such as storage and computation capacity. Computing
capacity offered by Amazon EC21 or IBM SmartCloud

• S. Bourne and C. Szabo are with the School of Computer Science, the
University of Adelaide, SA 5005, Australia.
E-mail: {scott.bourne, claudia.szabo}@adelaide.edu.au

• Quan Z. Sheng is with the Department of Computing, Macquarie
University, NSW 2109, Australia. E-mail: michael.sheng@mq.edu.au

1. https://aws.amazon.com/ec2/

Enterprise+2 are examples of IaaS offerings. Platform
as a Service (PaaS) provides access to utilities such as
software development and hosting frameworks. For
example, Google App Engine3 and Microsoft Azure4

both contain PaaS features for web application de-
velopment and hosting. Finally, Software as a Service
(SaaS) are software applications deployed in a way
that is Internet accessible, automatically scaling, and
multi-tenant. SaaS enables clients to remotely use soft-
ware complex systems, such as customer relationship
management through Salseforce5.

A proposed fourth layer of the cloud service archi-
tecture residing above SaaS has been in the form of
Business Process as a Service (BPaaS), which has had in-
creasing research interest in recent years [8][9][10][11].
The driving idea behind BPaaS is to mash-up services
from numerous providers into a business process
structure, which can then be offered to clients as its
own service. BPaaS providers will naturally target
common or proven business processes that apply to
a large potential market, or require management of
several complex components. This is appealing to
clients as it provides a low-cost, low-risk outsource
option for integral business operations.

Figure 1 shows an abstract example that demon-
strates the structure and variety of services and re-
sources that a BPaaS can utilize. In this example,
the BPaaS is composed of heterogeneous component
services from the service provider and third parties.
Two SaaS services (i.e., SaaS 1 and SaaS 2) used by the

2. http://www-07.ibm.com/au/managed-cloud-hosting/
3. https://cloud.google.com/appengine/docs
4. https://azure.microsoft.com/en-gb/
5. www.salesforce.com/au/



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2667662,
IEEE Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICE COMPUTING 2

Fig. 1. An abstract BPaaS example

BPaaS are hosted and managed by the same provider.
Private internal software exclusive to the BPaaS is also
required. Two of the SaaS services are from external
sources - SaaS 3 is from a third party, while SaaS 4 is
another service of the BPaaS provider, but hosted on
an external PaaS.

Configurability is a key property for BPaaS, similar
to all services in the cloud hierarchy. The use of
configurable business processes can affect the actual
properties of the business process, such as the work-
flow structure [12][13], resources used [14][15], and
variables [16]. In contrast, the use of configurable
BPaaS, due to their service-based nature, ensures that
clients can align BPaaS services with their internal
business operations and policies, while providers can
exploit economies of scale by offering their service
to a larger potential market. Moreover, BPaaS intro-
duces third-party services and with this additional
transactional concerns when compared to traditional
configurable business process mainly stemming from
the fact that transactional requirements will span more
than one service provider and will have to adhere
to various provider constraints. The inclusion of the
client’s perspective to the traditional configurable
business process paradigm by allowing the client to
configure more than just selected features or control
flow variations makes BPaaS services appealing to
a variety of client types [8][9][10][11], while at the
same time introducing challenges as discussed below.
For example, some business clients may have internal
systems already in place to handle certain steps, while
smaller businesses may outsource these services.

However, when a BPaaS has a large number of
configurable components, the verification that the be-
havior is correct and/or meets client requirements
can be challenging, as state space explosion hin-
ders the verification of large models [17][18], and
the requirements provided by clients can be com-
plex [19]. Existing approaches in managing business
process configuration ensure domain constraints over
configuration choices, while allowing basic client re-

quirements such as selected features or control flow
variations. One area that has yet to receive research
attention is ensuring both domain constraints and client
transactional requirements during BPaaS configuration.
These requirements can include conditions for accept-
able process commit or abortion, required recovery
operations for key activities, or valid forms of process
compensation, and are difficult to verify in a cloud-
based scenario where multiple stakeholders are in-
volved. A configuration method that ensures complex
requirements within a feasible runtime will be able
to provide service clients with increased trust for
outsourcing potentially sensitive business operations.

To address these problems, we propose a three-step
configuration and verification process which relies on
a modeling paradigm. Such paradigm allows us to
capture transactional requirements and subsequently
verify them. Our approach is expressive and relatively
easy to use by stakeholders, while at the same time
being sufficiently rigorous to allow us to apply formal
methods for verification.

The remainder of this paper is organized as fol-
lows. Section 2 provides the details of our config-
urable BPaaS model, with formalization of domain
constraints and client transactional requirements. A
configuration process outlined in Section 3 applies
formal methods to these models to determine a config-
uration solution. Section 4 contains a report of our im-
plementation, validation scenarios, and performance
analysis with large models. Section 5 discusses future
directions for our work. Finally, Section 6 overviews
the related research and Section 7 provides some
concluding remarks.

2 TRANSACTIONAL BPAAS MODELING

Before transactional requirements can be verified, they
need to be modeled within the BPaaS context. To
better illustrate our approach, we consider the sce-
nario of a configurable Web store checkout BPaaS. The
clients of this process will be small and medium sized
Web stores, while the users will be customers. This
BPaaS targets businesses selling physical or digital
goods, as standard orders or pre-orders. The process
places shipping orders for physical goods and re-
trieves download links for digital goods. Specific tasks
in the process include validating customers, obtaining
payment details, updating inventory and accounting
systems, and processing customer payment amongst
others. Clients can configure the structure of this
process to suit their business requirements. For ex-
ample, stores only selling digital goods can remove
all tasks related to product shipping, while stores that
do not store customer details can restrict the process
to handling unregistered guest customers.

This process provisions both constant and config-
urable external resources. Examples of configurable
resources include the optional payment services used



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2667662,
IEEE Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICE COMPUTING 3

A

B

A

B

A

B1 B2

A

B1 B2 A B A B

Mandatory Optional OR XOR Implication Exlcusion

Fig. 2. Feature model constraints used in our approach

by the BPaaS, such as Paypal6, or Epoch7 and eWay8

credit card transactional managers. Data objects can
also be configured as appropriate, such as including
or excluding fields in customer and product details.

2.1 Modeling Domain Constraints
Domain constraints are rules that allow providers
to restrict BPaaS configuration to valid choices. For
example, several credit card transaction management
resources may be available for a given payment oper-
ation, but at least one must be selected in any config-
uration. Our BPaaS modeling approach adapts feature
models from the software product line engineering
domain [20]. Feature models are tree-like structures
being able to express domain constraints formally and
visually. Typically, feature models are used to express
variability in a configurable system, by modeling the
constraints between optional features. In our approach,
we adapt them to formalize constraints between the
configurable activities, resources, and data objects of
a BPaaS. Furthermore, by using one feature model to
define all BPaaS domain constraints, we are able to
define constraints that cross these configuration per-
spectives. For example, certain configurable activities
may require the selection of specific resources.

We apply six feature model relationship structures,
shown in Figure 2, to model domain constraints. The
first four relationships apply to one or more leaf
features if the head feature is selected. For example,
the Mandatory and Optional structures define that if
feature A is selected, then feature B is essential or
optional respectively. Implication and Exclusion can
be defined between any two features in the model,
regardless of their level in the tree structure.

A feature model capturing the domain constraints
for the configuration of the checkout BPaaS is shown
in Figure 3. The root Checkout Service feature
contains all other features as children, and allows con-
straints to cross between activity, resource, and data
object perspectives. For example, Validate Login
is an optional feature, but it requires Register
User, Retrieve User Details, either Private
Customer Repository or Provider Storage,
and enables Store Payment Details to be se-
lected. A selection of features that satisfy all con-
straints in this model, therefore conforming to all
configuration requirements of the provider, is a valid
configuration of the BPaaS.

6. https://developer.paypal.com/
7. https://www.epoch.com/en/index.html
8. http://www.eway.com.au/developers/api/overview

Fig. 4. BPMN model of the configurable checkout
BPaaS

TABLE 1
Configurable resources for the BPaaS

Resources Activities

Private Inventory System, Mi-
croguru

Update Inventory, Hold Order,
Hold Product, Release Order,
Release Product

International Shipping, Toll Pri-
ority, AusPost, Client Notifica-
tion

Place Shipping Order

Provider Storage, Private Cus-
tomer Repository

Store Payment Details, Validate Lo-
gin, Confirm Shipping Details, Reg-
ister User, Store Shipping Details

Private Accounting System,
SaaSu Update Accounts

External Cloud Storage, Exter-
nal Server, Provider Storage Retrieve Download Link

FTP, FTPS Transfer File

2.2 Modeling Activities and Control Flow

We use BPMN for modeling activities and control
flow, as it formalizes the BPaaS structure while re-
maining easily readable for clients (see Figure 4 for
checkout BPaaS). Furthermore, BPMN is a widely
used notation for formalizing and executing business
processes, which increases the potential client and
provider base of our approach. Configuring BPMN
is also less complex than alternatives such as C-EPC,
as the alternation events and functions does not need
to be maintained [16].

Numerous activities in the checkout BPaaS utilize
configurable resources and data objects, which are
shown in Tables 1 and 2 respectively. The configurable



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2667662,
IEEE Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICE COMPUTING 4

Record 
Fraud

 Report

Initiate 
Order

Initiate 
Pre-Order

Release
Product

Hold
Product

Release
Order

Hold
Order

Microguru
Private

Inventory
System

SaaSu
Private

Accounting
System

eWay Epoch Paypal Validate
Login

Digital
Product
Details

Physical
Product
Details

Retrieve
User

Details

Store
Payment
Details

Register
User

Private
Customer
Repository

Provider
Storage

Customer
Repository

Payment
Details

Physical
Product
Details

Shipping
Address

Obtain
Shipping
Details

Place
Shipping

Order

Quantity
Confirm
Shipping
Details

AusPost
Toll

Priority
International

Shipping
Client

Notification
Store

Shipping
Details

Digital
Product
Details

Retrieve
Download

Link

Transfer
File

External
Cloud

Storage

External
Server

Provider
Storage

Checkout Service

Fig. 3. Feature model of the domain constraints of our example BPaaS

TABLE 2
Configurable data objects for the BPaaS

Data Objects Activities
Physical Product De-
tails, Digital Product
Details, Quantity

Initiate Order, Initiate Pre-Order

Shipping Address
Store Shipping Details, Place Shipping Order,
Obtain User Details, Retrieve User Data, Ob-
tain Shipping Details

Payment Details Process Payment, Retrieve User Data, Obtain
User Details, Reconfirm Payment Information

resources include Microguru9 for inventory manage-
ment, SaaSu10 for accounting, and FTP or FTPS for
digital product file transfer. Cloud storage is offered
by the provider for a customer repository and digital
product hosting. Data object configurability includes
physical and digital product details, enabling product
quantities, and payment and shipping details.

2.3 Modeling Transactional Requirements
While BPMN provides lifecycle statecharts that rep-
resent the transactional state of individual activi-
ties, a view of the transactional state of the entire
process is necessary for verification against process-
level transactional requirements. Such requirements
include specifying the activities critical for success-
ful execution, necessary activities to execute prior to
aborting, or requirements for valid process compensa-
tion. We adapt the separated behavior model of our
previous work in transactional Web service compo-
sitions [19], and use a transactional behavior model to
represent the global transactional state of the process.

The transactional behavior model of the BPaaS is
represented using a statechart, as shown in Figure 5.
This model contains various transactional states the
BPaaS can be in at a given point, from prior to acti-
vation by a client (Not Activated), to termination

9. http://www.microguru.com/
10. http://www.saasu.com/

[Condition]

Action

Sync

[Fail]

[Fail]

[Success]

[Success]

Recover

[Fault]

Recover

[Syncreq | 
Fault | timeout]

Sync
[Syncreq]

[Syncreq]
Sync

[cannot retry]

Not 
Activated

Activated

Suspended

Done

Rollback

Aborted

Compensated

Fig. 5. Transactional behavior model of the BPaaS

through the Done, Aborted, or Compensated states.
A Compensated state occurs after the effect of an
operation is undone through a successful Rollback.

Cloud service providers can indicate changes in the
transactional state of the BPaaS by modeling inter-
behavior messages [19] between transactional behavior
states and BPMN activities. These messages are ex-
changed between the transactional and BPMN activity
models and are used for their coordination and to
facilitate transactional behavior verification:

• Sync to trigger an activity execution,
• Recover to initiate activities for fault recovery,
• Delay to indicate that an unacceptable delay has

occurred during execution,
• Ping to test the liveness of an activity,
• Success to commit a successful execution of the

BPaaS,
• Fail to abort execution,
• Syncreq to request a Sync message for retrial

following a fault or recovery,
• Fault to indicate the presence of a fault that

requires recovery, and
• Ack to acknowledge a received Ping message.

Figure 6 shows an example of how the control
behavior model can direct and communicate with
the checkout BPMN using inter-behavior messages.
In this conversation session, the process becomes sus-
pended after processing payment fails, but the process
is able to commit successfully after the user is asked
to reconfirm their payment information.



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2667662,
IEEE Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICE COMPUTING 5

Activated Suspended

Prepare 
Order

Process
Payment

Not 
Activated

Sync Syncreq

Control Behavior

Checkout BPMN

Reconfirm 
Payment

Information

Activated Done

Confirm
Order

Sync Success

... ...

Fig. 6. Inter-behavior messages enabling communica-
tion between BPMN and transactional behavior models

1. BDD Analysis
2. Model Checking
Activity Selection

3. Model Checking
Resource and 
Data Objects

Feature Selection
Transactional
Requirement
Templates

Implemented
Templates

Implemented
Templates

Implemented
Templates

ReconfigureReconfigure

BPaaS Provider

Client

Configuration and Verification Process

Transactional
Requirements

Transactional
Requirements

Transactional
Requirements

BPMN ModelFeature Model
Configuration
Solution

Desired Features

Configure

Fig. 7. Overview of the BPaaS configuration and
verification process

Transactional requirements can be used by clients
to ensure that provisioned BPaaS conform to their
expected behavior and internal business rules. These
requirements can include specifying satisfactory re-
covery operations for certain critical activities, con-
ditions for compensating the process, or valid states
for aborting execution.

We adapt our work in verifying Web service compo-
sitions against developer transactional requirements
[19]. This approach allows common or useful trans-
actional requirements to be formalized using tempo-
ral logic templates, in order to reduce human error
and effort. Our proposed template set is divided
into component-level and composition-level, as shown
in Table 3. Component-level templates are used for
requirements specific to individual activities, while
composition-level templates apply to the transactional
behavior of the entire BPaaS.

3 CONFIGURATION AND VERIFICATION

In this section, we propose a BPaaS configuration pro-
cess that applies formal methods to ensure that i) the
configuration is valid with respect to provider domain
constraints, and ii) the process satisfies transactional
requirements drawn from the business rules of the
client. First, we provide an overview of the process
which guides clients through BPaaS configuration,
then we provide details on how Binary Decision

Diagram (BDD) analysis and model checking are used
at certain steps.

The structure of our configuration and verifica-
tion process is shown in Figure 7. The aim of this
process is to produce a configuration solution that
satisfies transactional requirements provided by the
client while respecting domain constraints. Our con-
figuration process applies formal methods and simple
client interaction to identify a configuration that i)
is valid with respect to domain constraints, and ii)
conforms to the client transactional requirements set.
This increases client trust that the service will behave
in a manner consistent with internal business policies
and requirements, without having to perform their
own analysis of the service behavior. The BPaaS client
provides the following input:

• Transactional Requirements: A specification on the
fine-detailed transactional behavior that they re-
quire the business process to conform to.

• Desired Features: Additional configurable activi-
ties, resources, and data objects.

The service provider provides the following input:
• Feature Model: A formalization of the domain

constraints for valid BPaaS configurations.
• BPMN Model: A BPMN model of the complete

configurable BPaaS with associated resources,
data objects, and transactional behavior model.

Our configuration process uses a series of tasks and
formal methods, as shown in Figure 7:

• Transactional Requirement Templates: The templates
shown in Table 3 for specifying transactional
requirements.

• Implemented Templates: The requirements imple-
mented using the templates and mapped to con-
crete temporal logic properties.

• Feature Selection: A task where the client selects
configurable features of the BPaaS from the fea-
ture model. This is used to add features to the
configuration, or adjust the BPaaS behavior fol-
lowing failed verification.

• BDD Analysis: Verifies that the domain con-
straints are not violated, given a feature model
and a selection of features.

• Model Checking Activity Selection: Formally verifies
the activity structure of the BPaaS against the
formalized transactional requirements, with the
exception of requirements with resource and data
object concerns.

• Model Checking Resources and Data Objects: For-
mally verifies the complete BPaaS model against
the transactional requirements with resource or
data object concerns.

3.1 BDD Analysis

The first verification step in our approach identifies all
features required for the client transactional require-



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2667662,
IEEE Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICE COMPUTING 6

TABLE 3
Component-level and Process-level Transactional Requirement Templates

Type Template Description

Component-

Compensate
Failure

Specifies an activity and a condition. The failure of the activity requires the condition to be satisfied in the
future, in order to recover from the failure.

level

Compensate
Success

Specifies an activity, and a condition that semantically undoes the effect of the completed activity. When
the execution of the process must be aborted or compensated, the nominated condition must be satisfied to
confirm that the activity has been undone.

Alternative Following the failure of an activity, one or several alternative activities are considered acceptable replacements.
NonRetriable Following failure of an activity, retrial is either not possible, or the client is not interested in it.

RetriablePivot
Specifies an activity that may be retried, but not undone. Following its successful completion, the service
must commit.

NonRetriable
Pivot

Specifies an activity that may not be retried or undone. The service must commit or abort depending on the
activity’s success.

Process-

Transactional
StateCritical

A condition that must be satisfied prior to entering a certain transactional state.

level

Transactional
StateTrigger

A condition that must trigger the entering of a transactional state in the future.

Transactional
StateReachable

A condition that indicates that a transactional state is reachable.

Transactional
StateUnreachable

A condition that indicates that a transactional state should not be reachable in the future.

Compensation
Specifies a condition that must be met during any compensation process. A compensation process is an
activity or series of activities to undo an execution of the service that has committed.

Conditional
Compensation

Specifies a condition for compensation and a condition for execution, such that the compensation condition
only applies when the execution condition has been satisfied previously.

TABLE 4
Propositional logic representations of the feature

model constraints of Figure 2
Constraint Propositional Logic
Mandatory A ↔ B

Optional B → A
OR A ↔ (B1 ∨ B2)

XOR (B1 ↔ (¬B2 ∧ A)) ∧ (B2 ↔ (¬B1 ∧ A))
Implication A → B
Exclusion ¬(A ∧ B)

ments, and determines whether they can all be se-
lected while satisfying the feature model constraints.
This implies that at least one valid configuration must
exist using the activities, resources, and data objects
specified in the requirements set, or extra features re-
quired by the client. We employ BDD-based analysis,
which has been proven as an effective method for
determining feature model satisfiability [21].

A BDD is an acyclic graph visualization of a propo-
sitional logic formula. Variables of the formula are
represented as nodes with two outgoing branches,
indicating their true or false assignment. The graph
is constructed in such a way that each complete
path from head node to terminal node represents
the assignment of boolean variables. All paths termi-
nate at a final true or false node, which determines
whether the variable assignments of that path satisfy
the propositional logic formula.

Our analysis transforms the feature model with
selections into a propositional logic formula, then
into a BDD which can be checked for satisfiability. A
feature model can be transformed into a propositional
logic formula according to the constraint conversions
in Table 4. We use the JDD library11 to automatically
construct BDDs from these propositional logic formu-
las to check their satisfiability.

Figure 8 shows an example of the transformation

11. http://javaddlib.sourceforge.net/jdd/index.html

Retrieve
Download

Link

Transfer
File

External
Cloud
Storage

External
Server

Provider
Storage

(a)

(b)

(c)

Fig. 8. A selection of domain constraints as a feature
model (a), propositional logic (b), and a BDD (c)

steps using a part of the checkout feature model.
The BDD in Figure 8(c) uses acronyms of feature
names for space considerations, and 0 and 1 nodes
for the false and true respectively. A solid line from a
node indicates true assignment, while a dashed line
indicates false. By traversing solid lines from selected
features, and dashed lines from unselected features,
the 1 and 0 nodes indicate whether the preceding path
was a valid or invalid selection. The steps in the BDD
analysis module in our BPaaS configuration process
are:

1) Select all features included in the transactional
requirements set,

2) Select any extra features specified by the client,
3) Automatically select all target features of

mandatory relationships from those already se-
lected,

4) Verify that all XOR relations with a selected
parent feature have exactly one feature selected,

5) Verify that all OR relations with a selected parent
have one or more features selected,

6) Construct propositional logic property from
depth-first traversal of feature model,

7) Append selections to property with ∨ operators,



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2667662,
IEEE Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICE COMPUTING 7

8) Construct Binary Decision Diagram from prop-
erty using JDD library,

9) Verify that BDD has a reachable true node.
BDD analysis is able to efficiently solve satisfiability

problems, but the size of the BDD dependent on vari-
able ordering in the underlying propositional logic
property. While finding the most efficient ordering is
an NP-complete problem [21], ordering variables from
a depth-first traversal of the feature model has been
approved as an effective strategy [22]. Therefore, we
adopt this approach in our work when transforming
the feature model to propositional logic.

3.2 Model Checking
Model checking [23] is a formal method that exhaus-
tively verifies that the behavior of a given model
conforms to a set of properties. We use the NuSMV
model checker [24] to verify BPaaS configurations
against the temporal logic forms of conversation rules
and transactional requirements. Our verification uses
the symbolic BDD-based model checking feature of
NuSMV. This constructs BDDs from the input model
to apply several verification techniques, including fair
CTL model checking and LTL model checking (by
an algorithm that reduces the problem to CTL model
checking). We use NuSMV as it provides support for
properties formulated in both LTL and CTL.

As model checking is an exhaustive technique, it
is subject to the state space explosion problem, in
which the state space of the system under verifica-
tion increases exponentially in relation to the num-
ber of processes and variables. This greatly impacts
verification time and feasibility for complex models.
Therefore, prior to verifying BPaaS configurations, we
aim to reduce their state space as much as possible.
We employ two approaches to curb the impact of state
space explosion during BPaaS configuration:

• Applying model checking in two phases, reduc-
ing the complexity and size of the model and
transactional requirements for each phase. Each
phase aims to verify a different configuration
perspective, namely, activity selection, and resource
and data object selection. These phases also allow
the client to focus on each perspective separately.
This simplifies the configuration process, espe-
cially when configuring a service with a large
number of features: if a requirement has no spec-
ification of resources and data objects, it only
needs verification during activity selection.

• Reducing state space prior to model checking
by transforming the model into a minimal Kripke
structure [25]. Kripke structures are concise rep-
resentations of system events and are commonly
used in formal verification. A Kripke structure is
a finite-state system model with a directed graph
structure, where each node represents a system
state where one or more properties are satisfied.

Initiate Order
Activated

Hold Product
Activated

Validate Login
Activated

Register User
Activated

Release Product
Rollback

Retrieve User Data
Activated

Store Payment Details
Activated

Retrieve Download Link
Activated

Transfer File
Activated

Commit Order
Done

BPMN Activity
Transactional State

Atomic Propositions

Fig. 9. Kripke structure example for verifying the
activity selection

We formally define a Kripke structure as K =
⟨Sk, T k,L⟩, where Sk is a finite set of states, I ⊆ Sk is
the set of initial states, Tk ⊆ Sk × Sk is the transition
function, and L is the labelling function that assigns
atomic propositions to each state. Atomic propositions
are the unique set of properties that are true for each
state. For transactional requirement verification, the
set of complete atomic propositions AP contains the
activities, resources, data objects, and transactional
states included in the implemented templates pro-
vided by the client. Figure 9 shows the Kripke struc-
ture generated to verify the single requirement that
Retrieve User Data or Register User is neces-
sary before entering the Done transactional state. The
atomic propositions included in this Kripke structure
contain the activities and transactional state necessary
for verifying the requirement.

The algorithm to generate these minimal Kripke
structures is adapted from our previous work in
verifying transactional Web service compositions [19].
Kripke structures are generated by i) identifying the
atomic propositions that must be included in the
structure, and ii) traversing the BPaaS model in a
depth-first order, constructing the structure as those
properties are encountered. All configurable features
included in the model are also included in the Kripke
structure, in order to help the client revise violating
behavior with reconfiguration.

Initiate Order
Activated

-
Digital Product Details

Hold Product
Activated
Microguru

-

Process Payment
Activated

eWay
Payment Details

Process Payment
Activated
PayPal

Payment Details

Release Product
Rollback

Microguru
-

Retrieve Download Link
Activated

Provider Storage
-

Transfer File
Activated

FTP
-

Commit Order
Done

-
-

Process Payment.Fault
Suspended

-
-

BPMN Activity
Transactional State

Resource
Data Objects

Atomic Propositions

Fig. 10. Kripke structure example for verifying resource
and data object selection



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2667662,
IEEE Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICE COMPUTING 8

3.2.1 Activity Selection
In this phase, if a requirement specifies the inclusion
of resources or data objects for an activity, only the
presence of the activity in the configured process is
verified. This reduces the state space of the process
model verified by the model checker, simplifies the
properties, and allows the client to focus primarily
on activity configuration. To verify activity selection
against transactional requirements, the atomic propo-
sitions of interest include configurable activities se-
lected from the feature model, and other activities or
transactional behavior states used by the implemented
set of temporal logic templates.

Model checking verifies the Kripke structure
against the temporal logic forms of the client’s trans-
actional requirements. If a violation is found, the
client must reconfigure the service by interpreting the
model checking output; otherwise, the second model
checking phase can be undertaken.

3.2.2 Resource and Data Object Selection
In this model checking phase, only transactional re-
quirements with resources or data objects in their
specification need to be verified. All other require-
ments have been ensured in the activity selection
phase. This phase is necessary because an activity
can have more than one resource provisioned, in
order to defer the selection to the user at runtime.
For example, a configuration may include several re-
sources for the Process Payment activity, as shown
in Figure 10. When verifying the activity selection,
Process Payment will be treated as a single state.
However, when considering resources, it becomes
several states in an XOR structure, as the choice
of resource is deferred to runtime. Data objects are
assumed to apply to every runtime instance and do
not require process restructuring during verification.
If a violation is found, the client must reconfigure the
service by interpreting the model checking output.

4 EXPERIMENTAL EVALUATION

We have implemented our BPaaS configuration pro-
cess in a prototype toolset. In this section, we provide
an overview of the implementation, before evaluating
our approach with configuration scenarios and an
extensive performance analysis.

4.1 Implementation
Figure 11 shows the architecture of our prototype tool
for BPaaS configuration. The architecture comprises of
five modules, which serve the following purposes:

• Client Interface: This provides an interface for
BPaaS clients to configure services according to
our configuration process.

• Configuration Controller: This controls the steps of
the configuration process as shown in Figure 7. It

Kripke Structure
Transformation

Temporal Logic
Templates

Behavior
Interpreter

Temporal Logic
Mapping

Defined
Templates

BDD Analysis

JDDJDDJDD Interface

Configuration Controller

Feature
Selection

Verification
Results

Client Interface

Requirement
Specification

Verification Controller

BPMN Model Feature Model

Configuration
Process

Domain 
Constraint
Manager

BPMN
Configuration

SMV Writer NuSMV Interface

Model Checking

NuSMV

Fig. 11. Overview of the implementation architecture
for our BPaaS configuration process

also handles configuration of BPMN models and
feature model interpretation.

• Verification Controller: The steps to implement
temporal logic templates and reduce the BPaaS
model to a minimal Kripke structure are handled
by this module.

• BDD Analysis: The JDD library is used by an in-
terface in this module to verify that a selection of
features does not violate the domain constraints.

• Model Checking: This is a wrapper for the NuSMV
model checker that handles input parsing, invo-
cation, and output interpretation.

4.2 Validation Scenarios
To validate our BPaaS configuration approach, we
demonstrate two scenarios using the Web store check-
out service. These scenarios show two clients with
quite different transactional and configuration re-
quirements, to demonstrate how our configuration
process is suitable for highly configurable BPaaS.
Scenario A: The client is a medium-sized business looking
to expand into online sales with a Web store. The business
offers physical products only, and does not do pre-orders.
Inventory and accounting are to be managed with SaaS (see
Figure 1), but the client has an existing customer repository
that will be used. Payment may be made with Paypal and
eWay services. The business is looking to outsource the
checkout service to an external SaaS provider (SaaS 3 in
Figure 1).

This client has provided 8 transactional require-
ments that the checkout service must satisfy:
SA1: Release Product is necessary prior to

Aborted after Initiate Order with
Physical Product Details.

SA2: Place Shipping Order should always
lead to Done.

SA3: Update Accounts using SaaSu is neces-
sary prior to Done.

SA4: Once the activities Update Accounts,
Place Shipping Order, or Update
Inventory have completed, the process
cannot abort.

SA5: Obtain Shipping Details is necessary
prior to Done.

SA6: Reconfirm Payment Information or
Cancel Order must be executed following
the failure of Process Payment.



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2667662,
IEEE Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICE COMPUTING 9

Fig. 12. Violating stack trace produced by NuSMV

SA7: Process Payment using Paypal cannot
be undone.

SA8: Process Payment using eWay cannot be
undone.

The BDD generated from the domain constraints of
Figure 3 and the configurable activities, resources, and
data objects included in these requirements indicate
that these features selections are valid. In addition
to the features specified in these requirements, the
client also selects the additional features AusPost,
International Shipping for handling shipping
orders, and the Confirm Shipping Details activ-
ity to streamline the process for recurring customers.
BDD analysis confirms that these selections satisfy the
domain constraints. It should be noted that the size
and complexity of the BDD generated for this analysis
is too large to be included in this paper.

During the activity selection model checking phase,
NuSMV identified a Kripke stack trace violating SA5,
shown in Figure 12. From analyzing the stack trace
and the BPMN structure in Figure 4, it can be de-
termined that the inclusion of Confirm Shipping
Details is enabling Obtain Shipping Details
to be bypassed, thereby violating the requirement
that it is critical for successful execution. In order to
complete this verification step successfully, the client
can i) remove Confirm Shipping Details from
the configuration, or ii) revise the violating require-
ment to include it. Following either of these revisions,
both model checking phases are successful and a
configuration solution is identified.

Scenario B: An online music store offers digital down-
loads, CDs, and merchandise of local artists, with shipping
currently restricted to domestic customers. The checkout
process must be able to handle pre-order sales of upcoming
releases. Payment must be handled through the owner’s
Paypal account, who also maintains customer details, ac-
counting, and inventory.

This client provides the following transactional re-
quirements for the BPaaS:
SB1: For sales that are not pre-orders, Transfer

File or Place Shipping Order must be
successful before the process commits.

SB2: A receipt must be sent to customers follow-
ing every successful sale.

SB3: Customers must be able to re-enter their
Paypal details and retry if payment is ini-
tially unsuccessful.

SB4: Process Payment cannot be undone.
BDD analysis conducted of the configurable fea-

tures included in this requirement set confirms that
they are valid with respect to the domain constraints
of the service provider. In addition, the client selects
Initiate Pre-Order, Store Payment Details
for configurable activities, Private Inventory
System, Private Accounting System, Private
Customer Repository, Provider Storage, and
AusPost for resources, and Digital Product
Details and Physical Product Details for
data objects.

Once these features are added, the constructed BDD
is not satisfiable, as this specific selection of features
violates the domain constraints. From analyzing the
feature model in Figure 3, we can see that the client
has omitted Validate Login, but has selected sev-
eral features that are directly dependent on it. The
client plans to handle all customer details manage-
ment internally, but the BPaaS requires the security of
a login procedure in order to conduct sales. To satisfy
this constraint, the client removes integration with
a Private Customer Repository and the Store
Payment Details activity from the configuration.
This activity and resource will be managed completely
internally, due to a manageable level of anticipated
customers. BPaaS running and provisioning costs may
also be reduced if a smaller number of features are
included.

After removing those two features from the con-
figuration, BDD analysis passes successfully. Next,
the configuration is verified against the transactional
requirements across our two model checking phases.
Both phases are successful, confirming that the con-
figured BPaaS model satisfies the domain constraints
and transactional requirement set.

Scenario C: A small software development studio has a
range of tools to offer consumers through a Web store
interface. The products offered by the client are all in the
form of digital downloads. Payment must be made using
credit card. The client already has an accounting system
in place, while inventory management is not required for
their exclusive focus on digital products. All sales will be
processed as guest transactions.

The requirements obtained from the client are:
SC1: Customer email addresses must be obtained

and verified for the store mailing list.
SC2: Once Process Payment has successfully

completed, the sale must be finalized.
SC3: Every completed sale must deliver a soft-

ware product to the customer from an
External Cloud Storage.



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2667662,
IEEE Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICE COMPUTING 10

In addition to the activities obtained from the
requirements set, the client nominates Record
Fraud Report and Initiate Order. The con-
figurable resources and data objects included are
Digital Product Details, SaaSu, External
Cloud Storage, and Epoch. A concern for this
client is that the Update Inventory activity is not
configurable, despite not being relevant to their re-
quirements. Provisioning a BPaaS that uses excessive
activities or resources outside the client’s require-
ments may have an impact on the overall service
performance or cost. As the domain constraints are
under the control of the provider, it is the client who
must decide if this risk is tolerable for their operations.

If the client persists with the service, by select-
ing either the Microguru or Private Inventory
System resources, the configuration is confirmed to
be valid by the BDD analysis. Furthermore, both
model checking phases successfully guarantee their
requirements set.

4.3 Performance Analysis
There are several reasons that our configuration pro-
cess must be able to handle large and complex sce-
narios in an efficient way. Firstly, the impact state
space explosion has on model checking performance
is exponential as the size of the model increases.
Clients may also have large and complex sets of trans-
actional requirements to be verified. Furthermore,
model checking may need to be applied by the client
several times, if a configuration solution is difficult to
obtain. Therefore, long verification times are likely to
compound and become a bigger problem for clients.

4.3.1 Temporal Logic Templates
The first step in our performance analysis is to verify
the impact each individual temporal logic template
has on model checking performance. Table 5 shows
the verification time for minimal Kripke structures,
as generated by our Kripke structure reduction algo-
rithm, against one requirement specified using each
template. The Scope variable required by every tem-
plate is set to Global in each test in order to obtain an
even comparison. These results indicate that the tem-
plates with the greatest model checking performance
demand are CompensateSuccess, Alternative,
NonRetriablePivot, and Compensation. Our
evaluation utilizes these templates in an even ratio.

4.3.2 BPaaS Configuration
We perform two series of performance verification
tests for our BPaaS configuration process. The first set
of tests aims to validate the performance benefit of our
approach using a straightforward model with smaller
requirements sets. The configured BPaaS model con-
tains a total of 100 activities (30 configurable), and
a combined total of 30 configurable resources and

TABLE 5
NuSMV execution times for individual templates

Template NuSMV (ms)
CompensateFailure 7.3
CompensateSuccess 7.8
Alternative 7.4
NonRetriable 7.1
RetriablePivot 7.2
NonRetriablePivot 7.5
ControlStateCritical 7.1
ControlStateTrigger 7.1
ControlStateReachable 6.5
ControlStateUnreachable 6.4
Compensation 7.4
ConditionalCompensation 7.3

Fig. 13. Verification times during configuration with and
without reduction for 10 to 100 requirements

data objects. This model is a BPaaS that has already
been configured through feature selection, rather than
a configurable BPaaS with 100 total possible activi-
ties. Using this model, we compare our multi-step
model checking approach against a single step model
checking approach that does not apply any state
space reduction measures. When verifying without
state space reduction, the NuSMV input is manually
written based on a complete implementation of the
model.

We perform 10 tests, verifying the configured BPaaS
model given sets of requirements from sizes 10 to 100.
The requirements use the same four templates that
are used in the previous section. Figure 13 plots the
verification times of both the reduced and unreduced
models. In the case of unreduced, the verification
time is determined from the sum of both model
checking phases, and the applications of the state space
reduction (SSR) algorithm applied at each phase. These
results indicate that our approach provides a signifi-
cant performance benefit in verification time, and that
the benefit becomes greater as the requirements sets
become larger.



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2667662,
IEEE Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICE COMPUTING 11

TABLE 6
Verification time (in seconds) of increasingly complex configuration scenarios

BPaaS Configuration NuSMV with reduction NuSMV with
Act. Config. Act. RDO Reqs Act. SSR Act. NuSMV RDO SSR RDO NuSMV Total no reduction

100 30 30
25 0.007 0.141 0.006 0.107 0.261 1.520
50 0.007 0.308 0.008 0.280 0.603 2.963
100 0.008 0.725 0.008 0.599 1.340 6.264

200 60 60
100 0.015 0.835 0.015 0.715 1.580 13.512
150 0.022 1.324 0.017 0.963 2.326 20.164
200 0.023 1.921 0.021 1.591 3.556 28.365

300 90 90
200 0.027 2.116 0.022 1.782 3.947 46.538
250 0.027 2.775 0.022 2.290 5.114 60.972
300 0.030 3.468 0.026 2.788 6.312 73.553

500 150 150
300 0.053 4.246 0.042 3.391 7.732 191.103
400 0.053 5.861 0.045 4.636 10.595 256.413
500 0.057 7.643 0.047 5.963 13.710 323.896

4.4 Discussion
Our work is a first step towards a comprehensive
BPaaS management framework that is capabale of
responding to changes in the environment and man-
aging client transactional requirements. However, sev-
eral limitations still exist. Firstly, we recognize that the
interface exposed to the client might have significant
complexities, which are not easy to tackle by non-
system experts. An interface to hide the details and
complexity of the service aside from the transactional
requirement specification and feature selection would
ensure that this work is widely used. As BPaaS is still
an emerging technology, this framework especially
one that enables clients to ensure complex transac-
tional requirements, would be a significant contribu-
tion to the field. Existing approaches that manage
cloud service evolution focus on requirements such
as process structure fairness [6], and preserving elas-
ticity [11] and multi-tenancy [26]. To the best of our
knowledge, complex properties such as transactional
requirements are yet to receive attention in this area.
The work presented in this article will hopefully pro-
vide avenues for addressing a host of opportunities
present in the early stages of BPaaS research.

5 RELATED WORK

There is an increasing research interest in related
areas such as configurable cloud service applications
[26][27], and configurable or adaptive business pro-
cess models [14][16][17]. Based on our analysis of
related work as well as the various uses of BPaaS as
outlined by the scenarios in Section 4, we identify a set
of criteria as shown in Table 7, and group them in two
categories, namely, Support, focused on the modeling
of the business process, and Correctness, focused on
the verification of process correctness.

The Support criteria is related to the business pro-
cess expressiveness enabled by the approach. The
Process Formalism criterion identifies how the ap-
proach expresses business processes. If business pro-
cess structures are not explicitly incorporated in the
approach, the value is left blank. The next criteria
specify whether it is capable of modeling resource and

TABLE 7
Comparison criteria overview

Category Criteria Values

Support

Process
Formalism Petri-nets, BPMN, statecharts

Resources
√

or -
Data

√
or -

Domain
Constraints

Feature model, OVM,
hierarchy model

Correctness

Process Model Syntax, Soundness, Deadlock-
freedom

Criteria Configurability Circular dependency-free,
contradiction-free

Client
Requirements

Feature selections, business
rules, QoS parameters

data and configurability. Finally, the means of express-
ing domain constraints are identified for comparison.
Correctness Criteria identifies the properties that are
ensured during the configuration or adaptation ap-
proach. Process model criteria refers to structural or
behavioral correctness of the process model, such as
soundness [28] or syntactical correctness [12]. Some
approaches may also analyze the configurability of the
model to identify issues such as contradictions or cir-
cular dependencies [29]. The final criterion identifies
the client requirements that are input into the process,
such as selections of features [5][30], or more complex
behavioral requirements [15].

Approaches to managing cloud service configura-
tion has so far mostly focused on SaaS [5][26][30].
These approaches share many concerns with BPaaS
configuration, such as managing domain constraints,
and eliciting requirements from clients. The config-
urable features of SaaS can include user interface, pro-
gram structure, data, access control, and other prop-
erties [26][30]. Several approaches have addressed
the problem of evolving multi-tenant SaaS at run-
time [5][27][31]. Multi-tenant services are able to han-
dle several clients with a single software instance,
in a way that prevents any interference between the
specific configurations of each client. As new clients
provision the service at runtime, the service must
evolve its behavior to meet new requirements, while
still supporting the existing clients.

While configurable BPaaS is still a new area of
research, work in related domains such as config-



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2667662,
IEEE Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICE COMPUTING 12

TABLE 8
Support criteria for comparing work related to BPaaS configuration

Approach Process Formalism Resources Data Domain Constraints
Mietzner et al. [26] -

√ √
OVM

Lizhen et al. [30] -
√ √

Metagraph relationships
Schoreter et al. [7] -

√ √
QCL Contracts

Banerjee [31] -
√ √

Variation pre and post-conditions
Kumara et al. [5] -

√ √
Feature model

Schroeter et al. [27] -
√ √

Extended feature model
Mendling et al. [12] C-EPC - - XPath Statements
van der Aalst et al. [32] Workflow nets - - -
van der Aalst et al. [13] Workflow nets, C-EPC - - -
Kumar and Yao [15] WS-BPEL

√ √
If-then statements

La Rosa et al. [33][16] C-iEPC
√ √

Hierarchy model
La Rosa et al. [29] - - - Configuration Model
Wang et al. [34] WS-BPEL

√ √
-

van der Aalst [35] C-nets - - C-net bindings
Tsai and Sun [36] Customizable workflow

√ √
OVM

Liu et al. [6] Petri-nets - - -
van Dongen et al. [28] EPC, Petri-nets - - -
Gröner et al. [14] BPMN

√ √
Feature Model

van der Aalst et al. [17] Petri-nets - - -
Jiang et al. [37] Dependency structures - - -
Hallerbach et al. [38] Workflow model - - Basic logic
Gottschalk et al. [39] LTS, C-EPC - - -

urable business processes [15][16][17] and reference
models [13][14] has been ongoing for several years.
Most approaches are enabled during the configura-
tion of business processes [12][13][32], while others
verify configurable business process models against
correctness properties [14][28], or obtain a set of all
valid configurations for clients to select from [17][37].

Table 8 shows that among 22 approaches we iden-
tified, only 65% apply themselves to business pro-
cess structures. Furthermore, only one third of those
approaches support resource and data configuration.
As indicated by the configurable cloud service ap-
proaches in our survey, resource and data configura-
bility is an important feature for allowing clients to
tailor services towards their requirements. Allowing
clients to configure resources can have an impact
on the running costs of the service, in addition to
increasing the potential market with greater config-
urability. Data object configuration allows clients to
make the service more similar to existing or expected
business practises. Therefore, we consider it impor-
tant for research into BPaaS configuration to consider
configuration from these perspectives.

Also, as the Client Requirements field in Table 9
indicates, most approaches only support simple re-
quirements such as selecting and removing features.
Feature selections are all the client provides in 26%
percent of our surveyed approaches, while other basic
binary selections, such as blocking or hiding activities,
make up a further 39%. Other approaches provide
some business rule support [15][34], such as basic if-
then conditions. To the best of our knowledge, trans-
actional requirements important to clients, such as
those supported by our template set, are not yet sup-
ported by any business process configuration method,
and this is one of the major contributions of this work
compared to existing works.

We also identify that little research so far has
addressed BPaaS explicitly. Approaches such as [6]
target their configuration method towards SaaS that
has a business process structure of activities, while
some configurable business process methods consider
variability of resources and data associated with activ-
ities. However, BPaaS has their own unique concerns
such as configurable use of third-party services, and
the inherent transactional concerns.

Our approach manages BPaaS configuration in a
way that addresses the issues identified above. Firstly,
our BPaaS model enables configuration from numer-
ous perspectives important to BPaaS clients, namely,
activities, resources, and data objects, as shown in the
scenario examples. Our configuration method aims to
elicit and ensure complex transactional requirements
from clients, by adapting the temporal logic template
set as shown in Section 4. This is in contrast to
the approaches proposed in [17][37] but it has the
advantage of a reduced runtime when configuring
services with many configuration options and values.

6 CONCLUSION
The increase in cloud computing adaptations in recent
years has produced the concept of Business Process
as a Service (BPaaS), whereby service providers are
able to offer common or proven business processes to
clients looking to automate and/or outsource parts of
their operations. We address the problem of managing
BPaaS configuration in a way to ensure that the
resulting service i) is valid with respect to config-
uration constraints of the provider, and ii) satisfies
transactional requirements drawn from the business
rules of the client. Our approach utilizes several mod-
elling techniques, including BPMN for business pro-
cess structure, statecharts for transactional state, fea-
ture models for configuration constraints. Using these



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2667662,
IEEE Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICE COMPUTING 13

TABLE 9
Correctness Criteria for comparing work related to BPaaS configuration

Approach Process Model Configurability Client Requirements
Mietzner et al. [26] - - Feature selections
Lizhen et al. [30] - - Feature selections
Schoreter et al. [7] - - Feature selections
Banerjee [31] - - Required services
Kumara et al. [5] - - Feature selections
Schroeter et al. [27] - - Feature selections
Mendling et al. [12] Syntax - Function and connector variants
van der Aalst et al. [32] Syntax and Soundness - Blocked and hidden activities
van der Aalst et al. [13] Syntax and Soundness - Blocked and hidden activities
Kumar and Yao [15] Syntax - Business rules

La Rosa et al. [33][16] Syntax -
Blocked and optional functions,

resources, data objects,
connectors

La Rosa et al. [29] - No circular dependencies
or contradictions Boolean questionnaire answers

Wang et al. [34] - - Set of business policy types
van der Aalst [35] - - Blocked activities

Tsai and Sun [36] - - Structure, GUI, resources, data,
QoS

Liu et al. [6] Fairness, deadlock-free,
reachability - Adding, deleting, modifying

elements
van Dongen et al. [28] Relaxed soundness - Termination states

Gröner et al. [14] - Control flow and domain
constraint conflicts Feature selections

van der Aalst et al. [17] Weak-termination - Blocked and hidden activities
Jiang et al. [37] Deadlock-free - Blocked activities

Hallerbach et al. [38] Soundness - Security, maintenance, and
workload context variables

Gottschalk et al. [39] - - Blocked, hidden, and optional
activities

models, we develop a BPaaS configuration process
that applies Binary Decision Diagram (BDD) analysis
and model checking. BDD analysis ensures that BPaaS
features selected during configuration do not violate
the domain constraints of the service provider, while
model checking verifies the configured BPaaS against
transactional requirements provided by the client. To
reduce the impact of state-space explosion, we employ
a state-space reduction algorithm and split the model
checking into two phases. These phases verify differ-
ent configuration perspectives separately, and allow
for the state space and temporal logic properties to be
reduced further. Our performance analysis shows that
the proposed configuration method is capable of ver-
ifying models with hundreds of activities, resources,
data objects, and requirement sets within seconds.

ACKNOWLEDGMENTS

Quan Z. Sheng’s work has been partially supported
by Australian Research Council (ARC) Discovery
Grant DP0878917 and FT140101247. The authors
would like to thank the anonymous reviewers for
their valuable feedback on this work.

REFERENCES

[1] S. Bouchenak, G. Chockler, H. Chockler, G. Gheorghe, N. San-
tos, and A. Shraer, “Verifying cloud services: present and
future,” SIGOPS Operating Systems Review, vol. 47, no. 2, 2013.

[2] S. Marston, Z. Li, S. Bandyopadhyay, J. Zhang, and A. Ghal-
sasi, “Cloud Computing The Business Perspective,” Decision
Support Systems, vol. 51, no. 1, pp. 176–189, 2011.

[3] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud Computing:
State-of-the-Art and Research Challenges,” Journal of Internet
Services and Applications, vol. 1, no. 1, pp. 7–18, 2010.

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, and I. Stoica,
“A View of Cloud Computing,” Communications of the ACM,
vol. 53, no. 4, pp. 50–58, 2010.

[5] I. Kumara, J. Han, A. Colman, and M. Kapuruge, “Runtime
Evolution of Service-Based Multi-Tenant SaaS Applications,”
in Service-Oriented Computing. Springer, 2013, pp. 192–206.

[6] Y. Liu, B. Zhang, G. Liu, M. Zhang, and J. Na, “Evolving
SaaS Based on Reflective Petri Nets,” in Proceedings of the
7th Workshop on Reflection, AOP and Meta-Data for Software
Evolution. ACM, 2010, pp. 7:1–7:4. [Online]. Available:
http://doi.acm.org/10.1145/1890683.1890690

[7] J. Schroeter, S. Cech, S. Götz, C. Wilke, and U. Aßmann,
“Towards Modeling a Variable Architecture for Multi-Tenant
SaaS-Applications,” in Proceedings of the 6th International Work-
shop on Variability Modeling of Software-Intensive Systems. ACM,
2012, pp. 111–120.

[8] R. Accorsi, “Business Process as a Service: Chances for Remote
Auditing,” in The 35th Annual Computer Software and Applica-
tions Conference Workshop. IEEE, 2011, pp. 398–403.

[9] S. Bourne, C. Szabo, and Q. Sheng, “Managing Configurable
Business Process as a Service to Satisfy Client Transactional
Requirements,” in Proceedings of the 11th International Confer-
ence on Services Computing. IEEE, 2015, pp. 154–161.

[10] T. Lynn, J. Mooney, M. Helfert, D. Corcoran, G. Hunt, L. Van
Der Werff, J. Morrison, and P. Healy, “Towards a Framework
for Defining and Categorising Business Process-As-A-Service
(BPaaS),” in 21st International Product Development Management
Conference, 2014.

[11] M. P. Papazoglou and W. van den Heuvel, “Blueprinting the
Cloud,” IEEE Internet Computing, vol. 15, no. 6, pp. 74–79, 2011.

[12] J. Mendling, J. Recker, M. Rosemann, and W. M. P. van der
Aalst, “Generating Correct EPCs from Configured C-EPCs,”



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2667662,
IEEE Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICE COMPUTING 14

in Proceedings of the Symposium on Applied Computing. ACM,
2006, pp. 1505–1510.

[13] W. M. P. van der Aalst, M. Dumas, F. Gottschalk, A. H. M. ter
Hofstede, M. La Rosa, and J. Mendling, “Preserving Correct-
ness During Business Process Model Configuration,” Formal
Aspects of Computing, vol. 22, no. 3-4, pp. 459–482, 2010.

[14] G. Gröner, M. Bošković, F. S. Parreiras, and D. Gašević, “Mod-
eling and Validation of Business Process Families,” Information
Systems, vol. 38, no. 5, pp. 709–726, 2013.

[15] A. Kumar and W. Yao, “Design and Management of Flexible
Process Variants using Templates and Rules,” Computers in
Industry, vol. 63, no. 2, pp. 112–130, 2012.

[16] M. La Rosa, M. Dumas, A. H. M. ter Hofstede, J. Mendling,
and F. Gottschalk, “Beyond Control-Flow: Extending Business
Process Configuration to Roles and Objects,” in Proceedings of
the 27th International Conference on Conceptual Modeling, 2008,
pp. 199–215.

[17] W. M. P. van der Aalst, N. Lohmann, M. Rosa, and J. Xu,
“Correctness Ensuring Process Configuration: An Approach
Based on Partner Synthesis,” in Proceedings of the 8th Interna-
tional Conference on Business Process Management (BPM 2010),
ser. Lecture Notes in Computer Science, vol. 6336, pp. 95–111.

[18] C. Baier and J.-P. Katoen, Principles of Model Checking. MIT
press, 2008.

[19] S. Bourne, C. Szabo, and Q. Sheng, “Verifying Transactional
Requirements of Web Service Compositions using Temporal
Logic Templates,” in Proceedings of the 14th International Con-
ference on Web Information System Engineering. Springer, 2013.

[20] K. C. Kang, J. Lee, and P. Donohoe, “Feature-Oriented Product
Line Engineering,” IEEE Software, vol. 19, no. 4, 2002.

[21] D. Benavides, S. Segura, and A. Ruiz-Cortés, “Automated
Analysis of Feature Models 20 Years Later: A Literature Re-
view,” Information Systems, vol. 35, no. 6, pp. 615–636, 2010.

[22] W. Zhang, H. Yan, H. Zhao, and Z. Jin, “A BDD-Based Ap-
proach to Verifying Clone-Enabled Feature Models Constraints
and Customization,” in High Confidence Software Reuse in Large
Systems. Springer, 2008, pp. 186–199.

[23] E. Clarke, “Model Checking,” in Foundations of Software Tech-
nology and Theoretical Computer Science. Springer, 1997.

[24] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “NuSMV 2: An
Opensource Tool for Symbolic Model Checking,” in Computer
Aided Verification. Springer, 2002, pp. 241–268.

[25] S. Kripke, “Semantical Considerations on Modal Logic,” Acta
Philosophica Fennica, vol. 16, no. 1963, pp. 83–94, 1963.

[26] R. Mietzner, A. Metzger, F. Leymann, and K. Pohl, “Variabil-
ity Modeling to Support Customization and Deployment of
Multi-Tenant-Aware Software as a Service Applications,” in
Proceedings of the ICSE Workshop on Principles of Engineering
Service Oriented Systems. IEEE, 2009, pp. 18–25.

[27] J. Schroeter, P. Mucha, M. Muth, K. Jugel, and M. Lochau,
“Dynamic Configuration Management of Cloud-based Appli-
cations,” in Proceedings of the 16th International Software Product
Line Conference (SPLC 2012), pp. 171–178.

[28] B. F. van Dongen, M. H. Jansen-Vullers, H. M. W. Verbeek,
and W. M. P. van der Aalst, “Verification of the SAP Refer-
ence Models using EPC Reduction, State-Space Analysis, and
Invariants,” Computers in Industry, vol. 58, no. 6, 2007.

[29] M. La Rosa, W. M. P. van der Aalst, M. Dumas, and A. H. M.
ter Hofstede, “Questionnaire-Based Variability Modeling for
System Configuration,” Software & Systems Modeling, vol. 8,
no. 2, pp. 251–274, 2009.

[30] L. Cui, H. Wang, J. Lin, and H. Pu, “Customization Modeling
Based on Metagraph for Multi-Tenant Applications,” in The 5th
International Conference on Pervasive Computing and Applications.
IEEE, 2010, pp. 255–260.

[31] A. Banerjee, “A Formal Model for Multi-Tenant Software-as-
a-Service in Cloud Computing,” in Proceedings of the 5th ACM
COMPUTE Conference: Intelligent & Scalable System Technologies.
ACM, 2012, p. 18.

[32] W. M. P. Van Der Aalst, M. Dumas, F. Gottschalk, A. H. M.
ter Hofstede, M. La Rosa, and J. Mendling, “Correctness-
Preserving Configuration of Business Process Models,” in
Fundamental Approaches to Software Engineering. Springer, 2008.

[33] M. La Rosa, M. Dumas, A. H. M. ter Hofstede, and
J. Mendling, “Configurable Multi-Perspective Business Process
Models,” Information Systems, vol. 36, no. 2, pp. 313–340, 2011.

[34] M. X. Wang, K. Y. Bandara, and C. Pahl, “Process as a Service
Distributed Multi-Tenant Policy-Based Process Runtime Gov-
ernance,” in The International Conference on Services Computing.
IEEE, 2010, pp. 578–585.

[35] W. M. P. van der Aalst, “Business Process Configuration in the
Cloud: How to Support and Analyze Multi-tenant Processes?”
in Proceedings of the 9th European Conference on Web Services,
2011, pp. 3–10.

[36] W. Tsai and X. Sun, “SaaS Multi-Tenant Application Cus-
tomization,” in The 7th International Symposium on Service
Oriented System Engineering. IEEE, 2013, pp. 1–12.

[37] J. M. Jiang, S. Zhang, P. Gong, and Z. Hong, “Configur-
ing Business Process Models,” SIGSOFT Software Engineering
Notes, vol. 38, no. 4, pp. 1–10, 2013.

[38] A. Hallerbach, T. Bauer, and M. Reichert, “Guaranteeing
Soundness of Configurable Process Variants in Provop,” in
IEEE Conference on Commerce and Enterprise Computing. IEEE,
2009, pp. 98–105.

[39] F. Gottschalk, W. M. P. van der Aalst, and M. H. Jansen-Vullers,
“Configurable Process Models A Foundational Approach,” in
Reference Modeling. Springer, 2007, pp. 59–77.

Scott Bourne received his PhD degree in
computer science from the University of Ade-
laide in the School of Computer Science in
2016. His research interests include service-
oriented computing, formal methods, verifi-
cation, and program analysis. Scott has pub-
lished in several conferences (e.g., ICSOC,
WISE, SCC) and international journals (e.g.,
Information Sciences). He has recieved a
number of awards due to his research work
including a Dean’s Commendation for Doc-

toral Thesis Excellence from the University of Adelaide in 2016.

Claudia Szabo is currently a lecturer at
School of Computer Science, the Univer-
sity of Adelaide. She is also an Associate
Dean (DI) of Faculty of Engineering, Com-
puter and Mathematical Sciences. Claudia
received her PhD degree in computer sci-
ence from National University of Singapore.
Her research interests include model-driven
engineering, distributed and cloud comput-
ing, verification and validation of distributed
systems. She is the author of more than 50

publications. She is a member of IEEE.

Quan Z. Sheng is a full professor and Head
of Department of Computing, Macquarie Uni-
versity. He received the PhD degree in com-
puter science from the University of New
South Wales in 2006. His research interests
include service computing, distributed com-
puting, Internet computing, big data analyt-
ics, Internet of Things, and Web of Things.
He is the recipient of ARC Future Fellowship
in 2014, Chris Wallace Award for Outstand-
ing Research Contribution in 2012, and Mi-

crosoft Research Fellowship in 2003. He is the author of more than
270 publications. He is a member of ACM and IEEE.


