A New Negative Output Buck-Boost Converter with Wide Conversion Ratio

Shumin Ding, and Faqiang Wang, Member, IEEE

Abstract—In this paper, a new negative output (N/O) buck-boost converter, which can be applied for applications that need wide range of inverse voltage, is proposed. The steady state, small signal model and power losses of the proposed converter operating in continuous conduction mode (CCM) are analyzed. Comparisons among the traditional buck-boost converter, N/O hybrid buck-boost converter and N/O self-lift Luo converter are presented, and it is found that the proposed converter possesses a widest voltage conversion ratio in these four converters. Finally, a prototype is built, and the simulated waveforms from the PSIM software and the experimental results are presented for validation.

Index Terms—DC-DC power converters, negative output, wide conversion ratio.

I. INTRODUCTION

C-DC converters have been applied to industrial applications widely during the past few decades. With rapid development of technology, negative output (N/O) dc-dc converters play an important role in the industrial fields, such as regenerative braking system (RBS) of DC motors for hybrid electric vehicles, signal generator and data transmission interface, neutral point clamping power electronics systems, wind power generation and photovoltaic power generation [1]-[4], etc.

As well known, the buck-boost converter and Cuk converter are two typical traditional N/O converters, and their voltage conversion ratios \((-1/(1-D))\), that is the duty cycle) are same. They can generate a higher or lower output voltage value than the input voltage. Theoretically, they both can produce an extremely high step-down or step-up output voltage when the duty cycle \(D\) is close to 0 or 1. However, in practical operation, this situation can not be met for the limitation of power switches and diodes [5], [6]. Additionally, a transformer can be used to get a larger conversion ratio, such as flyback converters which also obtain negative output voltage. Unfortunately, the transformer causes switch voltage overshoot and EMI problems that lead to low efficiency and huge volume [7].

In the past few decades, many N/O converters have been proposed. For example, the N/O KY buck converter with the voltage conversion ratio \(-D\) who had the fast load transient response was proposed in [8]. The N/O KY buck-boost converter with the voltage conversion ratio \(-2D\) who possessed no bilinear characteristics was proposed in [9]. The N/O KY boost converter which was constructed by integrating a positive to negative path to boost converter with the voltage conversion ratio \(-1/(1-D)\) was proposed in [10]. For wider conversion ratio, the voltage lift technique is applied to buck-boost or Cuk converter, such as the N/O self-lift Luo converter [1], the enhanced N/O self-lift Cuk converter [2], the N/O super-lift converter [11] and the voltage-lift-type Cuk converters [12]. However, all the above N/O converters have an unreasonable defect, that is, there is abruptly changing on the voltage across the energy-transferring capacitor which results in a very high current spike flowing through it. This capacitor’s current spike which is only limited by the parasitic parameters [13] cause inherent power loss and EMI [14].

In [15], several N/O single-switch quadratic PWM converters were proposed. Although they have different structures, they share the same voltage conversion ratio \(-D^2/(1-D)\). They can be regarded as modified cascading connection of buck and buck-boost converters, and require only one switch and three diodes. They have high step-down ability and wider conversion ratio than the traditional buck-boost converter. In [16] and [17], switched networks are inserted in the Cuk converter to construct the N/O hybrid Cuk converters. In [18], switched networks are inserted in the buck-boost converter to get hybrid buck-boost converters. One N/O hybrid buck-boost converter with voltage conversion ratio \(-D((1-D)(2-D))\) uses a switched-capacitor (SC) structure while another N/O hybrid buck-boost converter whose voltage conversion ratio is \(-2D(1-D)\) uses a switched-inductor (SL) structure. Nevertheless, the added switched networks lead to more diodes, capacitors or inductors to achieve wider conversion ratio, and it results in complex circuit, heavy volume and more power losses. In [19], a single-stage switched-capacitor-inductor N/O boost converter with the voltage conversion ratio \(-1/(1-D)\) was proposed. However, an additional resonant inductor should be used to limit the current spike caused by the energy transfer capacitor.
A new N/O buck-boost converter is proposed in this paper. It is a modification of the buck-boost converter and provides inverse output voltage with wide conversion ratio. This new converter uses the energy-transferring capacitor to store energy, and there is no abruptly changing voltage on it. The rest of the paper is organized as follows. The operating principle and steady state analysis of the proposed converter are described in Section II, and its small signal model is established in Section III. Power loss analysis is presented in section IV. PSIM simulations are depicted in section V to verify theoretical analysis preliminary. A prototype is built and experimental results are presented for further validation in section V. Finally, some conclusions and remarks are presented in section VI.

II. STEADY-STATE ANALYSES

As presented in Fig. 1, the new negative output converter consists of an input voltage \( v_{in} \), two power switches \( S_1 \) and \( S_2 \), two diodes \( D_1 \) and \( D_2 \), two inductors \( L_1 \) and \( L_2 \), two capacitors \( C \) and \( C_0 \), and one resistive load \( R \). For steady-state theoretical analysis, it is assumed that all components are ideal and the proposed converter operates in CCM.

A. Operating Principle

Power switches are turned on and off simultaneously, so there are two operation stages that are shown in Fig. 2(a) (the first stage when the power switches are turned on) and Fig. 2(b) (the second stage when the power switches are turned off). Currents through \( L_1 \) and \( L_2 \) are denoted by \( i_{L1} \) and \( i_{L2} \), respectively. The voltage across the capacitor \( C \) is defined as \( v_C \), and the voltage across the output capacitor \( C_0 \) is defined as \( v_0 \).

Some typical time-domain waveforms are shown in Fig. 3, where \( N \) is the nature number.

1) First Stage

Power switches \( S_1 \) and \( S_2 \) are turned on during the subinterval \((NT, NT+DT)\) in switching period as shown in Fig. 2(a), and diodes \( D_1 \) and \( D_2 \) are blocked via the reversal voltage. In this stage, the input voltage \( v_{in} \) supplies the energy to the inductor \( L_1 \), and the capacitor \( C \) together with the input voltage \( v_{in} \) delivers the energy to the inductor \( L_2 \). The voltage across the capacitor \( C \) is equal to the voltage stress on the diode \( D_1 \). The difference value of the input voltage \( v_{in} \) and the output voltage \( v_0 \) equals the voltage stress on the diode \( D_2 \). The corresponding differential equations can be given as follows

\[
\begin{align*}
L_1 \frac{di_{L1}}{dt} & = v_{in} \\
L_2 \frac{di_{L2}}{dt} & = v_{in} + v_C \\
C \frac{dv_C}{dt} & = -i_{L2} \\
C_0 \frac{dv_0}{dt} & = -v_C \\
\end{align*}
\]

2) Second Stage

Power switches \( S_1 \) and \( S_2 \) are turned off during the subinterval \((NT+DT, NT+2DT)\) in any switching period as shown in Fig. 2(b), and diodes \( D_1 \) and \( D_2 \) conduct during this interval. Combining with the input voltage \( v_{in} \), the inductor \( L_1 \) supplies energy to the capacitor \( C \) through the diode \( D_1 \). Meanwhile, the inductor \( L_2 \) transfers energy to the output capacitor \( C_0 \) through

\[
\begin{align*}
L_1 \frac{di_{L1}}{dt} & = v_{in} - v_C \\
L_2 \frac{di_{L2}}{dt} & = v_0 \\
C \frac{dv_C}{dt} & = i_{L2} \\
C_0 \frac{dv_0}{dt} & = -i_{L2} - \frac{v_0}{R} \\
\end{align*}
\]
B. Voltage Conversion Ratio

It is assumed that $v_{in}$, $v_C$, $i_{L1}$, $i_{L2}$, $i_S$ and $i_D$ are corresponding DC values of $v_{in}$, $v_C$, $i_{L1}$, $i_{L2}$, $i_S$ and $i_D$. When the proposed converter is in steady state, inductors $L_1$ and $L_2$ satisfy the volt-second balance, that is, the net volt-seconds in one period is equal to zero. Thus,

$$
\begin{align*}
&Dv_{in} + (1 - D)(v_C - v_{in}) = 0 \\
&Dv_{in} + (1 - D)v_C + (1 - D)v_0 = 0.
\end{align*}
$$

(3)

Accordingly, $v_C$ and $v_0$ can be derived from (3) and its expression is

$$
V_C = \frac{V_{in}}{1 - D},
$$

(4)

$$
V_0 = -\frac{D(2 - D)}{(1 - D)^2}v_{in}.
$$

(5)

Consequently, the voltage conversion ratio of the proposed converter can be derived from (5) and its expression is

$$
M = \frac{V_0}{V_{in}} = -\frac{D(2 - D)}{(1 - D)^2}.
$$

(6)

Obviously, if the duty cycle $D$ is smaller than 0.29, the voltage conversion ratio $M$ is less than 1, that is the proposed converter works in step-down mode. Otherwise, it works in step-up mode.

C. Voltage Stresses on Power Switches and Diodes

From the first stage, the voltage stresses on diodes can be obtained as follows

$$
V_{D_1} = \frac{V_{in}}{1 - D},
$$

(7)

$$
V_{D_1} = \frac{V_{in}}{(1 - D)^2}.
$$

(8)

From the second stage, the voltage stresses on power switches are expressed as

$$
V_{S_1} = \frac{V_{in}}{1 - D},
$$

(9)

$$
V_{S_1} = \frac{V_{in}}{(1 - D)^2}.
$$

(10)

D. Current Stresses on Power Switches and Diodes

Capacitors $C$ and $C_0$ satisfy the charge balance principle when the proposed converter is in steady state. We can obtain the expressions for $I_{S_1}$ and $I_{S_2}$ as follows

$$
I_{S_1} = \frac{D}{(1 - D)^3}I_0
$$

(11)

$$
I_{S_2} = \frac{1}{1 - D}I_0
$$

(12)

where the output current $I_{out} = V_0/R$.

According to the operating principle, the current through the power switch $S_1$ is

$$
i_{S_1}(t) = \begin{cases} i_{S_1}(t) + i_{S_2}(t) & (NT, NT + DT) \\
0 & (NT + DT, NT + T).
\end{cases}
$$

(13)

Consequently, the dc value of $i_{S_1}$ can be calculated as

$$
i_{S_1} = \frac{D}{(1 - D)^3}I_0.
$$

(14)

By the same way, the dc value of the current through the power switch $S_2$ is

$$
i_{S_2} = \frac{D}{(1 - D)^3}I_0.
$$

(15)

From the operation stages, the current through the diode $D_1$ is

$$
i_{D_1}(t) = \begin{cases} 0 & (NT, NT + DT) \\
i_{S_1}(t) + i_{S_2}(t) & (NT + DT, NT + T).
\end{cases}
$$

Thus, the dc value of $i_{D_1}$ can be given by

$$
i_{D_1} = \frac{1}{1 - D}I_0.
$$

(17)

By using the same process, the dc value of the current through the diode $D_2$ can be derived as

$$
i_{D_2} = I_0.
$$

(18)

E. Variation Ratio of Current and Voltage

From the typical time-domain waveforms as shown in Fig. 3, one can see that the inductor current $i_{L1}$ increases during the first subinterval and then decreases during the second subinterval. Thus, the peak-to-peak current ripple and the variation of the current $i_{L1}$ can be calculated as follows

$$
\Delta i_{L_1} = \frac{V_{in}DT}{L_1}.
$$

(19)

$$
\hat{\varepsilon}_1 = \frac{\Delta i_{L_1}}{I_{L_1}} = \frac{(1 - D)^2TR}{2M|I_{L_1}|}.
$$

(20)

Moreover, the peak-to-peak current ripple and the variation of $i_{L2}$ are calculated as

$$
\Delta i_{L_2} = \frac{D(2 - D)V_{in}T}{(1 - D)L_2}.
$$

(21)

$$
\hat{\varepsilon}_2 = \frac{\Delta i_{L_2}}{I_{L_2}} = \frac{(1 - D)^2TR}{2L_2}.
$$

(22)

Furthermore, the peak-to-peak voltage ripple and the variation of the voltages $v_C$ and $v_0$ can be derived, and their expressions are

$$
\Delta v_C = \frac{D^2(2 - D)V_{in}T}{(1 - D)^2RC}.
$$

(23)

$$
\hat{\varepsilon}_C = \frac{\Delta v_C}{V_C} = \frac{D|M|T}{2RC}.
$$

(24)

$$
\Delta v_0 = \frac{D^2(2 - D)V_{in}T}{(1 - D)^2RC_0}.
$$

(25)

$$
\hat{\varepsilon}_0 = \frac{\Delta v_0}{V_0} = \frac{DT}{2RC_0}.
$$

(26)

F. Boundary of CCM and DCM

The boundary between continuous and discontinuous conduction mode is that the minimum value of the inductor current equals zero, that is, $I_{L_1} = \Delta i_{L_1}/2$ and $I_{L_2} = \Delta i_{L_2}/2$.

Substituting (11), (12), (19) and (21) into these two equations, the condition for the proposed converter working in continuous conduction mode can be derived as follows

$$
L_1 > \frac{(1 - D)^3TR}{2D(2 - D)}.
$$

(27)

$$
L_2 > \frac{(1 - D)^3TR}{2}.
$$

(28)
G. Comparisons with Other Negative Output Converters

The traditional buck-boost converter, the N/O self-lift Luo converter and the N/O hybrid buck-boost converter utilizing the SL structure are compared with the proposed converter. Fig. 4 depicts their voltage conversion ratios. Note that, the vertical axis is the absolute value of their voltage conversion ratios. Also, the comparisons about the voltage conversion ratio, the voltage stresses on power switches and diodes, the number of components and the abruptly changing on the voltage among these converters have been presented in Table I.

From Fig. 4, the maximum ideal step-up voltage conversion ratio of the proposed converter is around 24, which is much higher than other N/O converters at \( D = 0.8 \), and its step-down voltage conversion ratio is comparable with the N/O hybrid buck-boost converter while the N/O self-lift Luo converter only provides a higher output voltage value. Hence, it is obvious that the proposed converter has a wider voltage conversion ratio. From Table I, clearly, there is no abruptly changing on the voltage across the energy-transferring capacitor \( C \) of the proposed converter, whereas the N/O self-lift Luo converter has abruptly changing voltage on the energy-transferring capacitor that causes extremely high current through the capacitor and switches. Compared with the N/O self-lift Luo converter and the hybrid buck-boost converter, the proposed converter has one more power switch. However, the N/O hybrid buck-boost converter needs four diodes and N/O self-lift needs three capacitors.

III. SMALL SIGNAL MODEL

As well known, small signal model is used to derive open loop transfer functions which are the basis of consequent control design and dynamical behavior analysis [19-22]. Here, the small signal model of the proposed converter is established, and the control-to-output transfer function is derived. Its bode diagrams calculated in the step-down and step-up mode are both presented and compared with the PSIM simulated results.

Based on averaging method, the state-average model can be directly derived as follows

\[
\begin{align*}
L_1 \frac{d (i_{L_1})}{dt} &= d \langle v_{C_1} \rangle + (1 - d) (\langle v_{C_1} \rangle - \langle v_{C_2} \rangle) \\
L_2 \frac{d (i_{L_2})}{dt} &= (\langle v_{C_1} \rangle + \langle v_{C_2} \rangle) + (1 - d) \langle v_0 \rangle \\
C \frac{d (\langle v_{C_1} \rangle)}{dt} &= -d (\langle i_{L_1} \rangle + (1 - d) \langle i_{L_2} \rangle) \\
C_0 \frac{d \langle v_0 \rangle}{dt} &= -d \langle v_{C_0} \rangle + (1 - d) \langle (i_{L_1}) - \langle (i_{L_2}) \rangle - \langle v_0 \rangle/R 
\end{align*}
\]

where \( \langle v_{C_1} \rangle, \langle v_{C_2} \rangle, \langle i_{L_1} \rangle, \langle i_{L_2} \rangle \) and \( \langle v_0 \rangle \) are averaged values of \( v_{in}, v_{C_1}, i_{L_1}, i_{L_2} \) and \( v_0 \).

By superimposing small ac perturbation \( \hat{v}_{na} \) and \( \hat{d} \) which are far less in the magnitude compared to dc quiescent values, the averaged input voltage, the averaged duty cycle, the averaged currents through inductors \( i_{L_1} \) and \( i_{L_2} \), and the averaged voltages across capacitors \( C \) and \( C_0 \) can be expressed as the sum of the dc values and the ac variations, that is

\[
\begin{align*}
\langle v_{na} \rangle &= v_{na} + \hat{v}_{na} \\
\langle i_{na} \rangle &= I_{na} + \hat{i}_{na} \quad \text{with} \quad \hat{v}_{na} \ll \langle v_{na} \rangle \\
\langle i_{na} \rangle &= I_{na} + \hat{i}_{na} \\
\langle v_{na} \rangle &= v_{na} + \hat{v}_{na} \\
\langle v_0 \rangle &= v_0 + \hat{v}_0 \\
d &= D + \hat{d} \ll |D| 
\end{align*}
\]

(30)

Submitting (30) into (29), and neglecting the second and higher ac terms since their values are very small, we can derive the small signal model as follows
In order to confirm the derived control-to-output transfer function, comparisons of the bode diagrams from the theoretical calculations and the PSIM simulations under \(V_{in}=20V\), \(L_1=0.8mH\), \(L_2=1mH\), \(C=22\mu F\) and \(C_P=44\mu F\) are shown in Fig. 5. Fig. 5(a) shows the case for step-down mode with the duty cycle \(D\) being 0.2 and the resistive load \(R\) being 10Ω. Fig. 5(b) shows the case for step-up mode with the duty cycle \(D\) being 0.6 and the resistive load \(R\) being 100Ω. It is clear that the theoretical calculations are in good agreement with the PSIM simulations. Thus, the derived small signal model here is an effective model to describe the dynamical behaviors of the proposed converter.

IV. POWER LOSS ANALYSIS

The theoretical analysis above is based on ideal components without parasitic resistances. However, the design of converter must consider the power loss such as inductor copper loss, power loss associated with semiconductor forward drops and resistance [23]. Power loss of the proposed converter is analyzed in this part. Note that, here, the RMS represents the root-mean-square value.

A. Power Losses of Inductors

The power loss of inductor has copper loss caused by winding resistance \(r_L\) and core loss caused by hysteresis and eddy current in the magnetic core. The copper loss places an important role in the total power loss of inductor [20].

According to (11) and (12), the approximate RMS values of currents through inductors are

\[
I_{L_{r, rms}} = \sqrt{\frac{\int_0^T i_{L_r}^2(t)dt}{T}} = \frac{DI_{L_r}}{(1-D)^2} \tag{35}
\]

\[
I_{L_{c, rms}} = \sqrt{\frac{\int_0^T i_{L_c}^2(t)dt}{T}} = \frac{I_{D}}{1-D} \tag{36}
\]

The copper losses of inductors can be calculated from (35) and (36) as follow

\[
P_{L_{r}} = I_{L_{r, rms}}^2 r_L = \left(\frac{D^2 r_L}{(1-D)^2 R} + \frac{r_L}{(1-D)^2 R}\right) P_0 \tag{37}
\]

where the output power \(P_0\) equals to \(V_{in} I_{D}\).

The core loss density of inductor can be approximated from the curve fit loss equation

\[
\Delta P_{L_{c, r}} = aB^b f^c \tag{38}
\]

where \(a\), \(b\), and \(c\) are determined from curve fitting done from the date sheet and the \(B\) is defined as half of the AC flux swing. Thus, the core losses of inductors are as follow

\[
P_{L_{c, r}} = I_{L_r} A_{r} \Delta P_{L_{r, c, r}} + I_{L_c} A_{c} \Delta P_{L_{r, c, c}} \tag{39}
\]

where \(L_r\) is the path length and \(A_r\) is the cross section of the core.

Hence, the total power losses of inductors are the sum of core loss and copper loss, that is

\[
P_L = P_{L_{r}} + P_{L_{c, r}} \tag{40}
\]

B. Power Losses of Capacitors

The power loss of capacitor is caused by parasitic resistance \(r_C\). Based on instantaneous currents in different operation
stages, the approximate RMS values of currents through capacitors can be given by

\[
I_{C_{rms}} = \sqrt{\int_0^T i_C^2 dt + \int_0^T i_{C_{2}}^2 dt} \approx \frac{\sqrt{T}}{1-D} I_0
\]

(41)

\[
I_{C_{1},rms} = \sqrt{\int_0^T (i_1 + i_{C_{1}})^2 dt} \approx \frac{\sqrt{T}}{1-D} I_0.
\]

(42)

Power losses of capacitors can be calculated by the following expression

\[
P_C = I_{C_{rms}}^2 r_{C} + I_{C_{1},rms}^2 r_{C_{1}}
\]

(43)

\[
P_C = \left(\frac{Dr_{C}}{(1-D)^2R} + \frac{Dr_{C_{1}}}{(1-D)R}\right)P_0.
\]

C. Power Losses of Power Switches

MOSFET is chosen as the power switch for the proposed converter. Its main power loss includes that the conduction loss caused by ON resistance \( r_{DS} \) when it is turned on and the switching loss caused during the rise time \( t_r \) and the fall time \( t_f \).

The conduction loss of power switch depends on the ON resistance \( r_{DS} \) and the RMS value of current through the power switch. Based on instantaneous currents in different operation stages, the approximate RMS values of currents through power switches are calculated as

\[
I_{S_{1},rms} = \sqrt{\int_0^T (i_{1} + i_{S_{1}})^2 dt} \approx \frac{\sqrt{T}}{1-D} I_0.
\]

(44)

\[
I_{S_{2},rms} = \sqrt{\int_0^T (i_{2} + i_{S_{2}})^2 dt} \approx \frac{\sqrt{T}}{1-D} I_0.
\]

(45)

Hence, the calculated losses of power switches are

\[
P_{S_{1},C} = I_{S_{1},rms}^2 r_{DS} + I_{S_{2},rms}^2 r_{DS},
\]

(46)

\[
P_{S_{1},C} = \left(\frac{Dr_{DS}}{(1-D)^2R} + \frac{Dr_{DS}}{(1-D)^2R}\right)P_0.
\]

The switching loss of power switch is related to the rise time \( t_r \) and the fall time \( t_f \), the voltage stress across the power switch \( V_S \) and the output voltage \( V_D \) and the averaged current through it. Thus, the switching losses of power switches can be obtained by

\[
P_{S_{1},S} = \frac{C_{S}}{2} \left(\frac{2}{V_S}(t_{r}+t_{f}) + \frac{2}{V_D}(t_{r}+t_{f})\right) f / 2
\]

(47)

\[
P_{S_{1},S} = \left(\frac{f}{2}(t_r + t_f) + (t_r + t_f)\right) P_0.
\]

Accordingly, the total power losses of power switches are the sum of the conduction losses and the switching losses, that is

\[
P_{S} = P_{S_{1},C} + P_{S_{1},S}.
\]

(48)

D. Power Losses of Diodes

The power loss of diode is mainly caused by the forward voltage drop \( V_F \) and the series resistance \( r_D \). Based on the instantaneous currents in different operation stages, the approximate RMS values of currents through diodes can be obtained as

\[
I_{D1_{rms}} = \sqrt{\int_0^T (i_{D_{1}} + i_{D_{2}})^2 dt} \approx \frac{1}{(1-D)^2} I_0.
\]

(49)

\[
I_{D2_{rms}} = \sqrt{\int_0^T (i_{2} + i_{D_{1}} + i_{D_{2}})^2 dt} \approx \frac{1}{(1-D)^2} I_0.
\]

(50)

Hence, the expression for the power losses of diodes is

\[
P_D = I_{D_{1}} V_F + I_{D_{2}} V_F + I_{D1_{rms}} V_D + I_{D2_{rms}} V_D
\]

(51)

\[
= \left[\frac{V_F}{(1-D)^2} + \frac{r_{D}}{(1-D)R} + \frac{r_{D}}{(1-D)R}\right]P_0.
\]

E. Calculated Efficiency

The total power losses of the proposed converter is the sum of the power losses of inductors, capacitors, power switches and diodes, that is

\[
P_{loss} = P_{L} + P_{C} + P_{S} + P_{D}.
\]

(52)

Thus, the calculated efficiency of the proposed converter can be given by

\[
\eta = \frac{P_o}{P_0 + P_L + P_C + P_S + P_D}.
\]

(53)

V. SIMULATED AND EXPERIMENTAL RESULTS

To verify theoretical analysis, PSIM simulation and prototype experiment are both built. The simulated waveforms and experimental results of the proposed converter operating in the step-down and step-up mode are presented and discussed in the following subsections.

A. Simulated Verification

Simulations of the proposed converter in the step-down and step-up mode are obtained from PSIM simulation to verify theoretical analysis preliminarily. The design of the inductors and capacitors are based on (20), (22), (24) and (26). The variations of currents through the inductors are set to 0.25%, the variations of voltages across the capacitor \( C_1 \) and \( C_2 \) are set to 2% and 1%, respectively. Detailed parameters of the components are presented in Table II.

Fig. 6 shows the key time-domain waveforms in the step-down mode. In Fig. 6(a), the inductor currents \( i_{L_1}, i_{L_2} \) and the PWM signal \( v_g \) are presented. This subfigure verifies that the converter operates in CCM. In addition, the average currents of \( i_{L_1} \) and \( i_{L_2} \) are 0.53A and 1.78A, which are equal to the theoretical values calculated from (11) and (12), respectively. Fig. 6 (b) displays the voltage \( v_C \) and the output voltage \( v_D \) along with the PWM signal \( v_g \). The average voltages of \( v_C \) and \( v_D \) are

\begin{table}[h]
\centering
\caption{Parameters of Main Circuit}
\begin{tabular}{|c|c|c|}
\hline
Parameter & Step-down Mode & Step-up Mode \\
\hline
Input voltage \( V_{in} \) & 20V & 20V \\
Output voltage \( V_o \) & -13.7V & -35.6V \\
Switching frequency \( f \) & 40kHz & 40kHz \\
Output load \( R \) & 10Ω & 60Ω \\
Duty cycle \( D \) & 0.23 & 0.4 \\
Inductor \( L_1 \) & 0.8mH & 0.8mH \\
Inductor \( L_2 \) & 1mH & 1mH \\
Capacitor \( C_1 \) & 10μF & 10μF \\
Capacitor \( C_2 \) & 44μF & 44μF \\
\hline
\end{tabular}
\end{table}
Fig. 6. Simulated waveforms of the proposed converter in step-down mode (a) $i_{L2}$, $i_{L1}$ and $v_g$; (b) $v_C$, $v_0$ and $v_g$; (c) $v_{S1}$, $v_{S2}$ and $v_g$. 26V and -13.7V, respectively, which are in good agreement with theoretical calculations from the expressions (4) and (5). Finally, the voltage stresses on power switches $S_1$ and $S_2$ are described in Fig. 6(c), which satisfy (9) and (10).

Similar to the step-down mode, Fig. 7 presents the corresponding key waveforms in step-up mode. From Fig. 7(a), the average currents $i_{L1}$ and $i_{L2}$ operating in CCM are 0.66A and 0.99A, respectively. From Fig. 7(b), the average voltages $v_C$ and $v_0$ are 33.3V and -35.6V, respectively. From Fig. 7(c), the voltage stresses $v_{S1}$ and $v_{S2}$ are 33.3V and 55.6V. All these simulated results are also coincide with theoretical calculations from the corresponding equations ((11), (12), (4), (5), (9), (10)).

B. Experimental Verification

A prototype is built to verify the theoretical analysis and simulations furtherly. The key parameters are same with the simulated parameters in Table II. According to simulated waveforms of voltage stresses on power switches (Fig. 7(c)), IRFP264 whose $V_{DS}=250V$ and $r_{DS}=0.06\Omega$ is chosen as the power switch. MUR810 whose maximum recurrent peak reverse voltage is 100V and forward voltage drop is 1V is selected to realize the diode. The gate driver TLP250H is used for driving the power switches. The equivalent series resistors (ESR) of inductors and capacitors are $r_{L1}=0.146\Omega$, $r_{L2}=0.139\Omega$, $r_{C}=0.009\Omega$ and $r_{C0}=0.048\Omega$.

The current through the inductor is detected by the current probe Tektronix A622. The voltage across capacitor and the drive signal are detected by the differential probe P5200A. The time-domain waveforms of currents and voltages are shown in the digital oscilloscope GDS3254.

Experimental waveforms of the proposed converter in step-down and step-up mode in steady state are depicted in Fig. 8 and Fig. 9, respectively. Fig. 8(a) and Fig. 9(a) show the experimental waveforms for the inductor currents $i_{L1}$ and $i_{L2}$, and the PWM signal $v_g$ in step-down and step-up mode,
Fig. 8. Experimental waveforms of the proposed converter in step-down mode (a) upper: $i_L$ (500mA/div), middle: $i_L$ (1A/div) and lower: $v_g$ (10V/div); (b) upper: $i_L$ (25V/div), middle: $v_0$ (10V/div) and lower: $v_g$ (10V/div); (c) upper: $v_S$ (25V/div), middle: $v_S$ (25V/div) and lower: $v_g$ (10V/div).

Fig. 9. Experimental waveforms of the proposed converter in step-up mode (a) upper: $i_L$ (1A/div), middle: $i_L$ (1A/div) and lower: $v_g$ (10V/div); (b) upper: $v_0$ (25V/div), middle: $v_0$ (25V/div) and lower: $v_g$ (10V/div); (c) upper: $v_S$ (50V/div), middle: $v_S$ (50V/div) and lower: $v_g$ (10V/div).

respectively. Fig. 8(b) and Fig. 9(b) show the experimental waveforms of the $v_C$, $v_0$ and the PWM signal $v_g$ in step-down and step-up mode, respectively. The measured waveforms of voltage stresses $v_S1$, $v_S2$ and the PWM signal $v_g$ are displayed in Fig. 8(c) and Fig. 9(c). Clearly, the proposed converter operates in CCM. Also, comparing the experimental waveforms with simulated waveforms, one can see that they are in basic agreement with each other.

In addition, the measured efficiency versus output power of the proposed converter in step-down mode with $D=0.23$ and step-up mode with $D=0.4$ are plotted in Fig. 10(a) and Fig. 10(b), respectively. Moreover, the theoretical calculated efficiencies obtained from the power loss analysis in Part IV are also shown in Fig. 10. The RMS values of the currents through inductors, capacitors and switches are approximate results since the swinging component of these currents are neglected to simplify the calculation. Accordingly, there are a little difference between the calculated efficiencies and the measured efficiencies, especially in the step-up mode whose current ripple is a bit higher than in the step-down mode. The measured efficiency is 82.25% in step-down mode when the output power is 47W and the measured efficiency is 84.9% in step-up mode when the output power is 45W.

Furthermore, an average current controller is applied to the proposed converter for obtaining the stable output voltage.
Fig. 10. Efficiency versus output power of proposed converter (a) step-down mode; (b) step-up mode

Note that, the output voltage’s polarity of the proposed converter is negative so that the inverting-amplifier circuit should be included in the controller. Dynamic responses to step change of output load are shown in Fig. 11. In step-down mode the initial \( R \) is equal to 50Ω, and then a resistance of 50Ω is in parallel. In other words, the output load \( R \) is changed from 50Ω to 25Ω. The responses of \( v_0, i_{L2} \) and \( v_g \) to this step change are shown in Fig. 11(a). Fig. 11(b) describes the dynamic responses of \( v_0, i_{L2} \) and \( v_g \) in step-up mode that the output load is changed from 150Ω to 75Ω. Obviously, both in step-down and step-up mode under step change of the output load, the output voltage \( v_0 \) are constant.

I. CONCLUSION

A new negative output buck-boost converter is proposed, analyzed and validated in this paper. The detailed steady state theoretical analysis and comparisons with other N/O converters are introduced. Small signal model is established and verified by the simulations for further dynamical behaviors analysis and system design. The power losses are analyzed for calculating the efficiency. The results from the theoretical calculations, the simulations and experiments are in agreement with each other, and show that the proposed converter has no current spike and can achieve a wider range of negative output voltage. Thus, the proposed converter can provide a considerable alternative for industrial applications which need wide range of negative output voltage.

APPENDIX

Considering the parasitic elements, the equivalent circuit of the proposed converter is shown in Fig. 12.

When the power switches are turned on, the voltages across the inductors are

\[
L_1 \frac{di_{L1}}{dt} = v_{ox} - i_{L1}(r_{DS1} + r_{DS}) - i_{L2}r_{DS1}\]

\[
L_2 \frac{di_{L2}}{dt} = v_{ox} + v_C - i_{L1}r_{DS1} - i_{L2}(r_{DS1} + r_{L} + r_c + r_{DS})
\]

When the power switches are turned off, the voltages across the inductors are

\[
L_1 \frac{di_{L1}}{dt} = v_{ox} - v_C - i_{L1}(r_{L} + r_c) - (i_{L1} + i_{L2})r_{DS} - V_{c1}
\]

\[
L_2 \frac{di_{L2}}{dt} = v_0 - V_{DS} - V_{DS} - i_{L1}r_{DS1} - (i_{L1} + i_{L2})r_{DS}
\]

According to the volt-second balance of inductors, the average output voltage considering the parasitic elements can be obtained as follow

\[
V_o = \frac{(1 - D)^2 R((1 - D)V_{F1} + (1 - D)^3 V_{F1}) + (-2 + D)DV_{C}}{aR + bC + mRC + nC + aoC_{DS} + pr_{DS}} + qr_{DS}
\]

where \( a=(1-D)^4, \ b=D^2, \ c=(1-D)^2, \ m=D(1-D), \ n=(1-D),\ a0=(1-D)^3, \ p=D \) and \( q=D(1-D)^2 \).
The absolute value of the voltage conversion ratio $M$ considering the parasitic elements is depicted in Fig. 13. Note that, here, it is assumed that $V_{F}=20V$, $r_{L}/(1+r_{L})=r_{L}$ and $V_{F}=V_{F}=1V$. From Fig. 13, it can be seen that the voltage conversion ratio is influenced by parasitic elements.

**Fig. 12.** Equivalent circuit of the proposed converter considering the parasitic elements.

**Fig. 13.** Absolute value of voltage conversion ratio $M$ considering the parasitic elements.

The absolute value of the voltage conversion ratio $M$ considering the parasitic resistance $r_L$ and forward voltage drop of diode $V_F$ is depicted in Fig. 13. Note that, here, it is assumed that $V_{F}=20V$, $r_{L}/(1+r_{L})=r_{L}$ and $V_{F}=V_{F}=1V$. From Fig. 13, it can be seen that the voltage conversion ratio is influenced by parasitic elements.

**REFERENCES**


**Shumin Ding** was born in Shandong, China, in 1990. She received her B.S. degree in electrical engineering and automation from Nanjing Normal University, Nanjing, China, in 2010. Now, she is currently working toward her M.S. degree in electrical engineering at Xi’an Jiaotong University, Xi’an, China. Her current research interests include design, modeling, analysis and control of power converters.

**Faqiang Wang (M’11) was born in Huayuan, Hunan Province, China, in 1980. He received his B.S. degree in Automation from Xiangtan University, Xiangtan, China, in 2003, and M.S. and Ph.D. in Electrical Engineering from Xi’an Jiaotong University, Xi’an, China, in 2006 and 2009, respectively. From 2009 to 2011, he was a lecturer with School of Electrical Engineering, Xi’an Jiaotong University. Since 2011, he has been an Associate Professor in the School of Electrical Engineering, Xi’an Jiaotong University. His current research interests include modeling, analysis and control of power electronics.**