


1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2016.2601061, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 12

Fig. 7. Probability of eavesdropping on a link in Q-5C, according to the
number of compromised nodes.

Fig. 8. Probability of eavesdropping on a link in 1-5C with various p,
according to the number of compromised nodes.

check if q = 1 is the best configuration also for QSC, it is
possible to check the values of p for s = 5. By increasing q,
the value of p sharply decreases. Fig. 7 shows the resilience
against eavesdropping according to q. Therefore, also for
QSC the best configuration requires q = 1.

As observed in Section 4.4, in QSC and QC, there exist
points of local maximum for the resilience against eaves-
dropping. Therefore, the adopted method of selection of p
and r could not provide the best resilience complaint with
the requirements of the proposed case study. In order to
verify this claim, 1-5C has been analyzed. As supposed,
p = 25 represents the best value among the eligible ones.
If the quantity of compromised nodes is higher than 4, the
local maximum is always higher than p = 160, which repre-
sents the best eligible value. If the quantity of compromised
nodes is equal to 4 or less, the point of local maximum is
lower than p = 160. Fig. 8 shows the resilience provided
by four values of p that correspond to the best solution
respectively for one (if x = 1, p = 87), for two (if x = 2,
p = 108), for three (if x = 3, p = 129), and for four nodes
compromised (if x = 4, p = 158). These data were obtained
by an exhaustive analysis. The improvement provided by a
lower p is limited. Therefore, the method adopted for the

Fig. 9. Probability of eavesdropping on a link, according to the number
of nodes compromised in the working phase.

TABLE 9
Assumptions

Schemes Assumptions

Mobile Possibility of Network

network node adding size unlimited

QSC, QC , EG, PGK & SKKE YES YES YES

LEAP+ & RSDTMK NO YES YES

UKP YES YES NO

FPWK YES NO NO

selection of the parameter p and r is still valid, since the
selection of a lower r would be counterproductive, while
the selection of a lower p will slightly improve the resilience
for few compromised nodes, but it will consistently decrease
the resilience for a higher quantity of compromised nodes.

5.3 Overall comparison

It is important to remark that the analyzed schemes have
different requirements. As shown in Table 9, RSDTMK and
LEAP+ assume that the network is static, while QSC, UKP,
QC, EG, SKKE, PGK and FPWK can also be applied to mo-
bile networks. Moreover, according to the memory require-
ment of the proposed case study, FPWK could be applied
only to networks composed by 31 nodes at most. Moreover,
FPWK does not allow adding nodes, since all nodes must
be known at the deployment. About the computational and
communication overheads, which are not considered in the
case study, it is observed that, although some protocols are
lighter, there is no significant difference that could affect the
network.

Fig. 9 shows the resilience against eavesdropping pro-
vided by 1-5C and the state-of-the-art schemes if x nodes
are compromised in the working phase. The best resilience
is provided by LEAP+ and FPWK, and it corresponds to the
theoretical maximum. Even the resilience provided by RS-
DTMK is close to the maximum. Among the schemes with-
out special assumptions, 1-5C provides the best resilience.
1C is generally better than EG and than UKP, while, with
an higher value of q, QC is better than EG only for a low
number of compromised nodes, in general accordance to the
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Fig. 10. Probability of eavesdropping on a link, according to the number
of nodes compromised within the initialization phase.

TABLE 10
Approximated probability of passing an authentication check if at least

one node has been compromised

Schemes Phase of the Attack

Working Initialization

PGK & SKKE 1 1

QSC, UKP, QC & EG ≥0.99 ≥0.99

RSDTMK ≥0.0007 ≥0.99

LEAP+ 0 1

FPWK 0 0

results presented in [15]. The worst resilience is provided
by SKKE and PGK, and it corresponds to the theoretical
minimum.

Fig. 10 shows the resilience against eavesdropping if x
nodes are compromised in the initialization phase. The only
schemes in the comparison that have an initialization phase
are LEAP+ and RSDTMK. The other protocols provide the
same resilience. RSDTMK provides a level of resilience
similar to EG. LEAP+ provides the worst resilience, like
SKKE and PGK. FPWK is the only scheme that can reach
the theoretical maximum.

Table 10 shows the approximated resilience against false
authentication. The values are approximated in order to
reach a simple representation. Therefore, the schemes that
provide similar results are grouped. Although the resilience
can decrease according to the quantity of compromised
nodes, it is always equal or close to 0 or to 1. All protocols
without special assumptions provide a probability of false
authentication higher than 0.99. In particular, SKKE and
PGK provide a probability equal to 1, independently of the
quantity of compromised nodes. In EG, UKP, QC and QSC,
the formula of the connectivity is the same as the false au-
thentication with one compromised node. Therefore, accord-
ing to the case study, they provide a probability close to 0.99
when one node is compromised, and a higher probability
when the quantity of compromised node increases. If the
nodes are compromised during the working phase, LEAP+
and FPWK provide a probability of false authentication
equal to 0, while RSDTMK provides a probability close to

0. If the attack is performed within the initialization phase,
only FPWK provides a probability of false authentication
equal to 0, while LEAP+ and RSDTMK provide a probability
higher than 0.99.

The best resilience is provided by FPWK. However, it has
the strictest assumptions. In particular, in the case study, it
could be applied only if the quantity of nodes in the network
is 31 or less. Therefore, FPWK represents the best solution
only for small WSNs without node adding.

For small static WSNs with node adding and for large
static WSNs, if it is assumed that a node cannot be com-
promised during the initialization phase, LEAP+ is the best
solution. If it is assumed that nodes can be compromised
even during the initialization phase, 1-SC represents the
most resilient scheme. RSDTMK could represent a good
compromise if it is assumed that an adversary can com-
promise a node during the initialization phase, but that this
attack represents a hard task.

For small mobile WSNs with node adding and for large
mobile WSNs, 1-SC represents always the best solution.

6 CONCLUSIONS

In this paper, a new key distribution scheme for wireless
sensor networks, called q-s-composite, has been proposed.
It is based on random predistribution of the secret mate-
rial. The main benefit of q-s-composite is represented by
an efficient memory management, which allows to store a
larger quantity of keys and consequently it can improve the
resilience of the protocol. This result is reached by means
of a new key generation mechanism and by limiting the
quantity of starting keys per link. The potential drawbacks
of the proposed scheme have been analyzed and an in-depth
analysis has shown that their effects are overcome by the
security improvements.

A comparison with state-of-the-art schemes shows that
the proposed approach represents the best solution for large
mobile WSNs, and that it is also the best solution for
static WSNs, if the nodes can be compromised during the
initialization phase.
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