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Fig. 4. Principal direction extraction through HT. (a) Detect one line
using HT. (b) Detect three lines using HT.

III. AIRPLANE RECOGNITION VIA SCE AND RSR

A. Preprocessing

Before recognizing the target, we should align the image
first. Hough transform (HT) [9] is used to extract the principal
axis of the target. HT tends to be affected by strong points,
Fig. 4(a) for example. To solve this problem, we detect several
lines, as shown in Fig. 4(b), and find the two closest lines in
terms of the angle of the line. The mean angle of the two lines
is looked upon as the principal direction of the target. Then
the image is rotated accordingly and by scanning each line of
the rotated image, we can get the principal axis of the target.
Finally, by searching the first and the last bright points along
the principal axis, we can obtain the head and the tail of the
airplane. Here, bright points are defined as the points whose
intensity is larger than τm xm , where xm is the maximum value
of the image and τm is a preset parameter. We add a constraint
that the first and the last bright points should be surrounded
by other bright points to reduce the influence of noise. When
the head and the tail of the airplane are determined, the central
point can be obtained and the images are aligned according to
the central point.

B. Airplane Recognition Through Reweighted
Sparse Representation

The aligned binary image is divided into blocks and the
density of scatter points in each block is concatenated to form
the feature. The SCE feature has the following two advantages.

1) The feature provides not only density but also position
information of the scatter point, therefore, although
roughly, it reflects the topology of scatter clusters of
the target, which is significant for target recognition in
SAR images.

2) The feature is insensitive to image misalignment, which
is inevitable in a real application.

As suggested from the recent research in the pattern recog-
nition field, SRC is an effective classifier and has been widely
used in many classification problems. We will briefly introduce
SRC first, and then detail the proposed RSR method. Denote
by Xk the training data set of the kth category, and each
column of Xk is one training sample in the kth category;
here the training sample refers to the image stacked as a
vector or the feature extracted from the image. Suppose there
are K categories to be classified, let X = [X1 . . . XK ] be the
whole training data set. SRC codes the query data y over X
by solving the following �1-norm minimization problem first:

α̂ = arg min
α

{‖y − Xα‖2
2 + λ‖α‖1

}
(1)

where α is the representation coefficient and λ is the
Lagrangian factor that balances the tradeoff between the
fidelity and the sparsity terms. Equation (1) is essentially a
sparsity constrained convex optimization problem that searches
α to make y ≈ Xα and in the meantime to make α as sparse
as possible with respect to �1-norm. α̂ can be written as
α̂ = [α̂1; . . . ; α̂K ], where α̂k is the coefficient corresponding
to the kth category. Then SRC computes the representation
residual of each category as follows:

εk = ‖y − Xk α̂k‖2 (2)

and the identity of the query data y, denoted by ky, is obtained
by finding the category that can represent y with the minimum
residual, that is

ky = arg min
k

{εk}. (3)

It is known that only when the error e = y − Xα obeys the
Gaussian distribution, the solution of (1) is the maximum like-
lihood estimation solution of the problem. However, usually e
does not meet this condition in practice, especially when there
are interfering objects near the target, as some elements of e
will become very large, and in this case the recognition rate
of SRC will decrease because SRC does not take the issue
into account. Although one can use the data with interfer-
ing objects as the training sample, the improvement is not
obvious as the position of the interfering object is completely
random. In order to reduce misclassification resulting from
the interfering objects, we design an RSR automatic purifying
method by assigning each element ei of e with a weight wi .
As ei with a large value often corresponds to the region having
interfering objects, we assign it with a small weight wi . Define
a diagonal matrix W whose diagonal element is the weight wi ,
i = 1, . . . , n, then the RSR method can be formulated as
solving the following optimization problem:

α̂ = arg min
α

{‖W(y − Xα)‖2
2 + λ‖α‖1

}
(4)

where wi satisfies

wi = fu

(
2exp

( − e2
i /h

)

1 + exp
( − e2

i /h
)

)

(5)

where h is a constant and fu(x) is a thresholding function
with parameter u defined as follows:

fu(x) =
{

x, x ≥ u

0, x < u.
(6)

We initialize W with the identity matrix, that is, W(0) = I,
and then iteratively update the weight matrix W and the
representation coefficient α. Suppose after t iterations the
weight matrix is W(t), then by solving (4) we can obtain
the representation coefficient α̂

(t). Therefore, the error e(t)

can be calculated through e(t) = y − Xα̂
(t), then wi is

reweighted via (5) to get W(t+1). This process is repeated
until the change of W between two adjacent iterations is
small enough or t reaches the number of iterations. To explain
why RSR works, let us look at the first term of the object
function in (4). If we rewrite Wy as y′ and WX as X′, (4)
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has the same form as (1) and the difference lies in that y is
reweighted using W. When ei is very small, wi approximates
one, therefore y ′

i in y′ is nearly equal to yi ; and when ei is
large which often corresponds to the region with interfering
objects, wi is less than one, consequently the corresponding
element y ′

i is smaller than yi because y ′
i = wi yi . In RSR,

the larger the representation error ei is, the smaller the element
y ′

i becomes; therefore, the RSR method has the ability to
reduce the influence of the interfering objects. The above fact
can be seen more clearly by expanding ‖W(y − Xα)‖2

2 as∑
i w2

i (yi −xT
i α)2, where xT

i is the i th row of X. It is obvious
that yi with a small wi plays a less role in the object function
benefiting from the reweighted operation. When the iteration
terminates, we can use (2) and (3) to obtain the identity of the
query target. A better scheme is training an SVM classifier
using the training data and making y′ = W(T )y as the test data,
where W(T ) is the weight matrix when the iteration terminates.
As SVM has excellent ability for problem with small sample
size and y′ obtained through RSR method can be seen as a
purified version of y, it can achieve better recognition result.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

To validate the effectiveness of the proposed method, several
experiments are conducted on four HH-polarized TerrarSAR-X
spotlight amplitude images of the aircraft boneyard in Davis.
The incidence angles of the four images are 45.1°, 45.2°,
45.1°, and 41.3°, respectively, and the spatial resolution is
0.5 m × 0.5 m. We manually collect two airplane data
sets from the four images. Data set I consists of 125 B52,
129 B707, and 134 SW airplanes, and we manually remove
apparent interfering objects if they exist. Data set II consists
of 10 B52, 10 B707, and 10 SW airplanes with severe
interfering objects. The lengths of B52, B707, and SW are
48.5, 46.61, and 34 m, and the width of their wings are 56.4,
44.42, and 22 m, respectively. The selected targets consist
of 128 × 104 pixels.

When using the SCE feature, there are three schemes
to obtain the identity of the target. We denote the method
using SVM classifier as SCE-SVM, using RSR to purify the
data followed by SRC as SCE-RSR-SRC, and using RSR to
purify the data followed by SVM classifier as SCE-RSR-SVM.
We compare these three methods with the principal compo-
nent analysis (PCA)-SVM method, the CFAR-SVM method,
the SRC method in [2], the KSRC method in [3], the Gabor-
SVM method in [4], and the SPV method in [7] on data set
I. The parameters in the proposed method are set as follows:
N is set to 50, τ is set to 0.3, rmin is set to 1, τm is set
to 0.5, and M is set to 64. For SCE-RSR-SRC and SCE-
RSR-SVM, we use the �1-ls method [10] to solve the �1–
norm minimization problem and the number of iterations is
set to 10. We randomly select p percent samples of data
set I as the training data and take the remainder samples
as the testing data. To decrease the influence of the sample
selection, the experiment is conducted several times and we
take the average recognition rate as the final result. Table I
lists the recognition rates of various methods and the average
runtimes of PCA-SVM, CFAR-SVM, SRC, KSRC, Gabor-
SVM, SPV, SCE-SVM, SCE-RSR-SRC, and SCE-RSR-SVM

TABLE I

COMPARISON OF RECOGNITION RATES (%) OF DIFFERENT METHODS

TABLE II

RECOGNITION RATES (%) OF SCE-RSR-SVM WITH VARIOUS τ

are 0.52, 624.82, 160.03, 72.37, 355.2, 124.66, 7.09, 176.94,
and 180.30 ms, respectively. The experimental results show
the following.

1) The proposed SCE-based methods outperform the tradi-
tional PCA and CFAR-based methods, which validates
the effectiveness of the SCE feature.

2) The SCE-RSR-SVM method achieves the best recogni-
tion rate and by further analyzing the probably confusion
matrix of each method, we can see that compared with
the other methods, SCE-RSR-SVM has better ability to
distinguish between B52 and B707, and in the meantime
is competitive for recognizing the SW airplanes.

3) SCE-RSR-SVM outperforms SCE-RSR-SRC, and the
reason is partly that SRC needs a certain amount training
data to get a satisfactory result; however, even when p
is set to 0.3, the number of the training data is still
small. It can be noticed that with the increase of p,
the gap in recognition rates between SCE-RSR-SRC and
SCE-RSR-SVM reduces.

4) SCE-RSR-SVM is better than SCE-SVM, which demon-
strates that RSR is an effective tool to purify the data.

To see how parameter τ affects the proposed method,
we set τ to different values and the recognition rates of
SCE-RSR-SVM with various τ are shown in Table II. It is
indicated that the optimal τ in the experiment is 0.3, and too
small or too large a value of τ will both decrease the
recognition rate. The incidence and azimuth angles play a
key role in SAR target recognition. To discuss the effect of
the incidence and azimuth angles on the proposed method,
we conduct the following experiment. First, we divide data
set I into two parts S1 and S2 according to the incidence angle,
and samples having similar incidence angles are grouped into
one set. Then part of samples in S1 are selected to form the
training set, the remaining samples in S1 are taken as the
testing set S1, and samples in S2 are taken as the testing set S2.
Therefore, the samples in S1 and the training set have similar
incidence angles while the incidence angles of the samples in
S2 and the training set are quite different. Table III lists the
recognition rates of SCE-RSR-SVM on S1 and S2. It can be
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TABLE III

RECOGNITION RATES (%) OF SCE-RSR-SVM ON S1 AND S2

TABLE IV

RECOGNITION RATES (%) OF SCE-RSR-SVM ON T1 AND T2

Fig. 5. Comparison of the image and SCE results before and after
reweighting. (a) Image having close targets. (b) Image slice before
reweighting. (c) SCE result of (b). (d) Image slice after reweighting. (e) SCE
result of (d).

seen from Table III that when the incidence angles of the train-
ing and the testing data are quite different, the performance of
the approach will decrease evidently. A similar experiment is
conducted to reveal the influence of the azimuth angle. In the
experiment, data set I is divided into the training set and the
testing sets T1 and T2. The samples in T1 and the training
set have similar azimuth angles while the azimuth angles of
the samples in T2 and the training set are quite different.
The experimental result shown in Table IV indicates that when
the azimuth angles of the training and the testing data are
quite different, the performance of the approach will decrease
evidently.

As mentioned in Section III, SCE-RSR-SVM would have
more advantages when the image has severe interfering
objects. To validate this, we conduct another set of experi-
ments, in which 30% samples of data set I are used as the
training data and the samples in data set II are taken as
the testing data. Since it is hard to find the major direction
of the target when the interference is severe, we manually
align the testing data. The recognition rate of SCE-SVM and
SCE-RSR-SVM are 73.33% and 80%, respectively, and the
result indicates that SCE-RSR-SVM has more advantages than

SCE-SVM when the data have interfering objects, recalling
that in the first set of experiment the two methods have
similar performances when p = 0.3. Fig. 5 illustrates why
RSR works when dealing with an image having interfering
objects. Fig. 5(a) is an image having close targets, therefore
when we cut the image slice from this image, there will
be severe interfering objects near the target in the image
slice as shown in Fig. 5(b). Fig. 5(c) is the SCE result of
Fig. 5(b). It is apparent that when directly using Fig. 5(c) as
the feature, neither SVM nor the SRC can obtain the correct
result. Fig. 5(d) and (e) gives the reweighted image and the
corresponding SCE result. It can be seen clearly that most
of the interfering objects are removed through reweighting
in RSR, so a correct result can be obtained.

V. CONCLUSION

An SCE and RSR-based method for airplane recognition is
proposed in this letter. The feature obtained via SCE can better
depict the characteristic of the target than that obtained through
the traditional point extraction-based method, as a point-target
corresponds to a region in the image due to the convolution
process in the imaging. We then design an RSR-based auto-
matic purifying method by assigning a weight to each element
of the feature iteratively according to the representation error.
The experimental results demonstrate the effectiveness of the
SCE feature and the RSR method, especially when the data
are affected by interfering objects. In addition, the proposed
method can be generalized to other recognition problems in
SAR images without major modification.
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