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Fig. 12. Total LTE cell throughput per packet-level simulator.
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Fig. 13. Uplink Resource Block Utilization.
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Fig. 14. Delay for reduced traffic load.
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Fig. 15. Throughput for high mobility and EIPA delay.
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Fig. 17. Total secondary data transfer for Miami METSAT scenario.

30 second traffic load.

We found that the interference between multiple cells
coupled with TCP led to poor network performance and
limited opportunity for improvement with EIPA. To avoid
the challenges involved in configuring a wireless network for
good TCP performance in the presence of multiple active
interfering links [40], we instead model the traffic with UDP.
Figure 17 plots the throughput of the secondary network
for the baseline, RB blocking, and EIPA cases. We see that
EIPA is able to offer about 85% of the throughput of the
unconstrained baseline case, demonstrating the effectiveness of
the approach. We might have anticipated poorer performance
based on the limitations observed in the single cell scenario,
but as with our study of the network capacity in Section
VI-A, the increased number of UEs in this large scale scenario
presented more opportunities to make effective use of the
interference constrained RBs.

VII. CONCLUSION

We have proposed EIPA, a novel power allocation algo-
rithm suitable for LTE uplink resource scheduling in shared
spectrum bands that are subject to aggregate interference
protection constraints. Algorithms of this kind are needed to
allow networks to make efficient use of spectrum in shared
environments. We described how EIPA scheduling can be im-
plemented within a practical LTE network, and demonstrated
its efficiency in the context of a real-world LTE-METSAT
spectrum sharing scenario. Specifically, we showed that EIPA
closely approaches the performance of optimal scheduling, but
with low enough complexity that it can be executed in a time-
scale suitable for LTE scheduling. With an established LTE
packet-level simulator, we verified the effectiveness of EIPA
as well as identified limitations and dependencies on the LTE
implementation. While we thoroughly examined EIPA in the
context of an LTE network, this approach is applicable to
secondary network resource scheduling in general.
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