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(a) Proposed (b) MCMC [20]

(c) TSA [15] (f) Graph-Cut [38]

(e) Natural gradient [16] (f) FGMA [14]

Fig. 7. Comparison of the supervised and unsupervised methods with
the state of the algorithm [16], [38], [14] and [15] using the bacteria
image (380� 380 pixels) from the supplementary material of [14].

optimisation, such as [8].
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