
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 1
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Abstract— Static random access memory (SRAM)-based ternary
content addressable memory (TCAM) offers TCAM functionality by
emulating it with SRAM. However, this emulation suffers from reduced
memory efficiency while mapping the TCAM table on SRAM units.
This is due to the limited capacity of the physical addresses in the
SRAM unit. This brief offers a novel memory architecture called a
resource-efficient SRAM-based TCAM (REST), which emulates TCAM
functionality using optimal resources. The SRAM unit is divided into
multiple virtual blocks to store the address information presented in the
TCAM table. This approach virtually increases the overall address space
of the SRAM unit, mapping a greater portion of the TCAM table in
SRAM and increasing the overall emulated TCAM bits/SRAM at the
cost of reduced throughput. A 72 × 28-bit REST consumes only one
36-kbit SRAM and a few distributed RAMs via implementation on a
Xilinx Kintex-7 field-programmable gate array. It uses only 3.5% of the
memory resources compared with a conventional SRAM-based TCAM
(hybrid-partitioned TCAM).

Index Terms— Field-programmable gate array (FPGA),
memory architecture, memory–throughput tradeoff, SRAM-
based ternary content addressable memory (TCAM), static
random access memory (SRAM).

I. INTRODUCTION

THE main task of a ternary content addressable memory (TCAM)
is to search contents stored in its memory. This is done by

accessing stored data by content rather than by address; this is unlike
static random access memory (SRAM), which accesses content using
the address. TCAM compares the search query with the contents
that are preloaded in the entire memory array simultaneously and
generates the result. TCAM can be used in one of the three states,
as follows: two binary states (0 and 1) and a do not care state (X).
Binary states are stored in data cells, and the do not care state is
stored in mask cells [1].

A typical TCAM has the advantage of fast searching over
SRAM-based searching solutions, but it also has drawbacks.
A TCAM cell uses more transistors than an SRAM cell. Hence,
it has high production cost per bit of memory storage and exhibits
less storage efficiency than SRAM devices of comparable bit density
and access time. This drawback is mainly because of emulating
the do not care state, which requires additional hardware memory
resources in terms of bits used for the emulation [2]. To overcome
the drawbacks in a typical TCAM, such as relatively high energy
consumption [4], complex memory structure, limited storage density,
low scalability, heavy licensing, and royalty costs by some TCAM
vendors [3], a research area called SRAM-based TCAM has been
proposed in the latest research [5]–[7], [13].
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The SRAM-based TCAM memory architectures generally require
SRAMs to map TCAM bits [5]–[7], [13]. The search operation
requires a fixed length binary query string (QS) as the address to
access the SRAM. It generates the vector that contains information
about matched address locations. The logical 1s and 0s in the
vector are treated as matched and mismatched address locations,
respectively. Later, a priority encoder is used to prioritize the loca-
tions of the vector when multiple matching bits are present in the
vector.

SRAM has an inherent hardware structure suited to store data,
which are accessed in a sequential manner. The SRAM-bit uti-
lization in the SRAM-based TCAM can be negatively affected
during the mapping of TCAM bits that are simultaneously accessed.
The decrease in the memory utilization efficiency of SRAM can
be even more significant for large TCAM emulations. This brief
focuses on efficiently using resources, such as memory and through-
put, and proposes a resource-efficient SRAM-based TCAM (REST)
emulation architecture to make use of memory–throughput tradeoff
in SRAM-based TCAM.

The rest of the brief is organized as follows. In Section II,
the previous works on SRAM-based TCAM and the motivations
guiding this brief are explained. Section III discusses the proposed
REST memory architecture. The use of virtual blocks (VBs) in the
REST memory architecture is discussed in Section IV. Section V
analyzes and compares various emulated TCAMs in terms of energy
efficiency, memory efficiency, and the latency for both search and
store operations. Section VI shows the hardware implementation for
the field-programmable gate array (FPGA). Section VII concludes
this brief.

II. PREVIOUS WORKS AND MOTIVATIONS

Various SRAM-based TCAMs have been implemented on the
FPGA platform. A scalable TCAM is implemented on the Xilinx
FPGA in [6]. It uses Xilinx primitive block RAMs (BRAMs) and
distributed RAMs to emulate classical TCAM. In this brief, all the
SRAMs are activated during a search operation, which increases
the overall power consumption. To avoid the increase in power
consumption in [6], a hierarchical low power search operation is
proposed in [7], which activates RAMs hierarchically based on
the match condition found in previous RAM blocks. A similar
FPGA-based packet classification engine [5] and UE-TCAM [13]
implemented TCAM using Altera and Xilinx primitive BRAMs,
respectively.

Another large TCAM was previously handled by logically dividing
the TCAM into relatively small TCAMs. Researchers implemented
hybrid-portioned SRAM-based TCAM, HP-TCAM [8], Z-TCAM [9],
and E-TCAM [12]. All used SRAMs and logic circuits to construct
TCAM functionality. They partitioned the set of TCAM bits into
groups of various sizes and mapped them to their SRAM-based
TCAM architecture. The architecture uses two SRAMs. The first
SRAM stores the information of the presence of a QS in TCAM
bits. The second SRAM stores the address information (AI) for the
corresponding QS. The HP-TCAM in [8] additionally stores the index
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Fig. 1. Memory architecture of a single REST block of dimensions W × H .

in the first SRAM that is later used to generate the address for
the second SRAM.

Previous works [5]–[9], [12], [13] considered throughput as a
primitive resource during emulation of TCAM and consumed large
SRAM resources. To make the most of the available SRAM bits,
it is essential to have the emulation scheme at an architecture level to
exploit the SRAM bits available in different physical blocks. Thus,
a resource-efficient approach is proposed, considering the tradeoff
between resources like throughput and memory utilization.

III. REST MEMORY ARCHITECTURE

REST is the emulation of classical TCAM in resource-efficient
ways. It can search QS against a set of the same size strings (data
string) in TCAM table and outputs the matched address for the
string.

The REST memory architecture makes use of VBs in the SRAM
units to achieve memory efficiency at the cost of reduced throughput.
High-level organization of the memory architecture of a single REST
block of dimension W × H −W addresses and H bits per address—is
shown in Fig. 1. A unit REST block includes a single-port SRAM
with m VBs for an AI table, m number of distributed RAMs for early
elimination (EE) tables, a single multiplexer with m inputs, a single
demultiplexer with m outputs, a priority encoder, and multiple AND

gates to conduct the TCAM emulation.
The H -bit input QS is partitioned into the m number

of b-bit substrings. The partitioned substrings are simultaneously used
as the addresses of m number of distributed RAMs with a dimension
of 2b × 1 bit.

In the REST memory architecture, distributed RAMs are used as
the EE table, as shown in Fig. 1. Precomputed lookup table (LUT)
data in distributed RAM are built to find the presence of b-bit
substring at an early stage. The output of each distributed memory
is single bit. The m number of bits from m distributed RAMs are
logically ANDed together to produce the signal used as the ENABLE
signal to the AI table. If the enable signal is logically low, the rest of
REST block operations are inactivated, and this corresponds to the
EE operation.

The SRAM unit for the AI table is logically divided into VBs.
The purpose of the AI table is to produce the original address in
the TCAM table. Each VB has a size of 2b × W bits and stores the

Fig. 2. Organization of the REST blocks to create larger TCAM.

W -bit original address that had the same data substring as the b-bit
substring used.

The VBs of the SRAM hold AI, and each VB is uniquely
associated with one substring. The association is achieved using a
multiplexer. When EE operation is not active, all the b-bit substrings
are sequentially used with their associated VBs in the AI table. The
sequential access occurs because the AI table is made of a single-port
SRAM.

The accessed and associated VB produces W -bit AI that is
associated with its corresponding W -bit register through a demul-
tiplexer. When all mW -bit registers are processed, the registers are
bitwise-ANDed to produce the W -bit matching address. The m times
faster clock (CLK × m) than the system clock (CLK) is used for
the multiplexer, demultiplexer, and the SRAM unit. When there
are multiple matching addresses, the priority encoder selects one
prioritized address to complete a single search operation.

To emulate large TCAMs, it is indispensable to logically partition
TCAM into smaller sizes of TCAM, and the partitioned TCAM is
then mapped to one REST block. Fig. 2 shows an example of the
array structure of REST blocks without priority encoders, bitwise
AND gate, and a priority encoder.

All n-REST blocks are executed in parallel and produce nW-bit
AI for the bitwise AND operation. The priority encoder selects 1 bit
from nW bits when multiple matching addresses exist.

To update a data string stored in any of the multiple rows of REST
blocks, it is first updated in the corresponding part of TCAM table,
and then the updated portion is mapped to the conventional row by
the memory write operations to the REST blocks (LUTs and the
associated AI table in respected REST blocks). All the REST blocks
in a row are updated in parallel. The update in a row is independent,
as it does not affect the other data strings stored in other rows.

IV. VIRTUAL BLOCKS OF SRAM

Typically, a single-port SRAM unit with 2n addresses and W bits
per address—SRAM (2n ×W )—can be used to store the W addresses
and n-bit data strings in the TCAM table for the purpose of emulating
TCAM with the dimension of W × n. These W bits correspond to
the AI in the AI table. Each bit in the W bits represents the original
address position that stores the QS. The correlation of SRAM and
TCAM sizes is shown in the following mapping relation:

SRAM unit(2n × W )
mapping⇐⇒ TCAM(W × n). (1)

Equation (1) shows that SRAM-based TCAM can emulate TCAM
with a size up to W × n bits in the SRAM with 2n × W bits.
All previously published SRAM-based TCAMs used (1) to store AI in
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Fig. 3. VBs of single-port SRAM unit.

Fig. 4. Throughput versus ETBs/SRAM for different VBs (m) in an SRAM
unit (512 × 72) running on a 500-MHz clock.

the SRAM unit. This allows only limited TCAM bits to be emulated
in the SRAM. To add more TCAM bits, more SRAM blocks are
required, which eventually reduces the memory efficiency. To mitigate
this effect and increase the emulated TCAM bits (ETBs) per SRAM,
VBs of the SRAM unit were created in REST. This was done by
halving the SRAM address space until it reached the point when
there were no more VBs available.

The size of each VB that determines the dimension of the TCAM
table is partitioned. Fig. 3 shows a generalized example of the 2n ×W
SRAM used in REST memory architecture with m VBs; each VB has
the dimension of (2n ÷ m) × W . In totality, m × [(2n ÷ m) × W ]-bit
TCAM can be emulated.

As the number of VBs increases, ETB also increases in REST
by exhaustively consuming all bits available in the SRAM—this
is known as maximal memory efficiency. Note that the previous
works [5]–[9], [12], [13] did not consider the memory efficiency in
terms of the number of bits and correspond to the case of that in (1),
as shown when m is 1 in Fig. 3.

Equation (2) shows ETB with a mathematical formula that has the
three parameters of m, W , and n. The formations of AI tables are
governed by the following formula:

ETB = m × {W × (n − log2 m)}. (2)

Throughput–ETB Tradeoff in REST

Fig. 4 compares ETB in bits and throughput in megabits/s with
varying numbers of VBs (m). The comparison was performed for a
512×72 SRAM that can operate at up to a 500-MHz clock frequency.
As the number of VBs in SRAM increases from 1 to 128, the ETB
increases from 648 to 18 432 bits. At the same time, the through-
put decreases from 36 Gbits/s (72 × 500 MHz) to 281 Mbits/s
(72×500 MHz divided by 128), respectively. REST resources can be

Fig. 5. Analysis of energy/bit/Search of emulated CAM Architectures.

adjusted by selecting either m = 1 (throughput efficient) or m > 1
(memory efficient).

Equation (3) is the formula used to calculate the throughput in
a single REST block. The throughput is defined as the number of
address bits per second produced from a REST block, which operates
on CLK. However, the maximum frequency of CLK is dependent
on m. An increase in m decreases the maximum frequency of CLK
and thus reduces the throughput

Throughput = CLK × W. (3)

It should be noted that VBs in REST (m > 1) always bring
larger ETB values compared with the case without VBs (m = 1).
This makes SRAM-based TCAM a practical design choice in imple-
menting large TCAMs when limited memory resources are available.

It is also true that SRAM-based TCAM may not bring the through-
put required with a reasonable ETB because there are limited numbers
of SRAM sizes in the application-specific integrated circuit or FPGA
environments.

In comparison with the other emulated TCAM struc-
tures [5]–[9], [12], [13], REST has a built-in option of adjusting mto
obtain the desired ETB, throughput, and latency. To the best of our
knowledge, this is the first work to show relationships among the
performance parameters embedded as a part of the TCAM emulation
architecture.

V. THEORETICAL ANALYSIS OF REST

A. Energy Efficiency Analysis of Various TCAMs

The energy efficiencies of various emulated TCAMs are compared
in Fig. 5. The comparison includes emulated TCAMs [6], [8], [9],
[12], and [13] and the proposed REST. Emulated TCAM architectures
along with their sizes and cases for respective architectures are shown
on the X-axis, while associated energy/bit/search metrics are shown
on the Y -axis.

The technology differences in the compared samples of CAM have
been factored out by normalizing the energy consumption against the
65 nm using the following as seen in [11]:

Enorm. to
65 nm

= E × 65 (nm)

tech. node (nm)
× 1.00 (V)

VDD(V)
. (4)

The large size 1024 × 150 TCAM in [6] consumed worst case
energy of 349.13 fJ/bit. REST, when m is 4, also consumes com-
parable worst case energy, 314.1 and 370.7 fJ/bit for large sizes
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Fig. 6. Memory consumption comparison between 18-kbit emulated TCAM
architectures and REST.

of 2592 × 28 and 1440 × 28 RESTs, respectively. The emulated
TCAMs [12] and [13] consume average energy of 132.04 and
68.77 fJ/bit, respectively. All the energy results in Fig. 5 are based on
the assumption in their respective previous works. REST calculated
energies using the worst case scenario in which all SRAMs are
activated during search operations.

B. Memory Efficiency Analysis of Various TCAMs

The bar chart in Fig. 6 illustrates the memory consumption
of 18-kbit emulated TCAMs [5], [6], [8], [9], [12], and [13] and
REST, when organized in variable array sizes and in the fixed array
size of 72 × 256. The variable array of sizes 72 × 256 and 512 × 36
are organized for REST when m is 128 and for remaining emulated
TCAMs, respectively.

Fig. 6 shows that REST using variable dimensions is the most
memory efficient when m is 128. REST uses 36.4 kbits of mem-
ory resources when m is 128, representing 0.5% of memory
consumption compared with case IV of Z-TCAM. The no-VB
case in [5], [6], and [13] and REST consume comparable memory
resources. However, REST is highly memory efficient with its inbuilt
VB methodology that allows the designer to use almost 50% and 97%
fewer memory resources than [5], [6], and [13], as shown in cases
when m values are 4 and 128, respectively.

The fixed array of the 72 × 256 size also consumes similar
memory except REST when m is 4, which further reduces memory
consumption from 584 to 368 kbits in comparison with the array
size of 512 × 36. Memory consumptions for 72 × 256 TCAM
are estimated based on the memory architectures provided by the
respective previous works, and all emulated TCAMs are organized
in a single layer.

C. Search and Store Latency Analysis of Various TCAMs

The search latency in a REST block is defined as the SRAM read
operations required from the time a QS is available at the input ports
of the REST block to the time the outcome is ready at output ports.
The latency is defined as the number of read operations in clock
cycles.

The bar chart in Fig. 7 compares the search latency in clock cycles
of emulated TCAMs [6], [8], [9], [12], and [13] and REST blocks
with an m of 4. The TCAMs in [8], [9], [12], and [13] had the fixed
latencies of six, three, three, and two cycles, respectively. However,
the latencies of REST and [6] are dependent on the value of m and

Fig. 7. Comparison of search latencies among various emulated TCAM
architectures.

TABLE I
BREAKUP OF DYNAMIC POWER CONSUMPTION OF A SINGLE 72 × 28

REST BLOCK USING THE XILINX X-POWER TOOL (WORST

CASE SCENARIO)

architectural parameters L and H , respectively. The latency of REST
with respect to the fast clock, CLK × m, is calculated using (5).
It takes m cycles to read AI and 1 CLK × m cycle to take AI to the
output port. The latency of [6] shows five clock cycles, when L = 4
and H = 1 are selected.

The store latency is defined as the maximum number of clock
cycles required for write operations to store the worst case word, all
Xs in the SRAM of REST block. The store latency of SRAM-based
TCAMs [5]–[9], [12], and [13] and REST for an SRAM with a
size of 2n × W in their respective memory architecture is calculated
using (6). For example, SRAM-based TCAMs of array size 72 × 9,
using SRAM of array size 512 × 72, require 513 cycles to store all
Xs as a word

Latencysearch = m + 1 (5)

Latencystore = 2n + 1. (6)

VI. HARDWARE IMPLEMENTATION IN FPGA

The 72 ×28 REST block has been implemented in the Xilinx
Kintex-7 FPGA [10]. The REST block has four VBs and a system
clock, CLK, of 50 MHz; it uses 200 MHz for the AI block because
there are four VBs. The design uses one BRAM of 36 K and eight
LUTs of 64 ×1.

A. Power Consumption

Table I shows the dynamic power consumptions in megawatts of
various resources in the 72 × 28 REST block.

Power consumption was computed using the Xilinx X-Power tool
for the worst case scenario, in which case BRAMs and logic blocks
are activated and there are no power reduction cases applicable, such
as no-EE case.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 5

TABLE II
RESOURCE UTILIZATION OF 72 × 28 REST BLOCK

B. Resource Utilization

Table II shows the resource utilization of the 72 × 28 REST block
from the Xilinx Vivado tool. The first and second columns show the
resources and their quantity, respectively.

VII. CONCLUSION

In this brief, we presented the novel memory architecture REST,
which aims to adjust the resource efficiency in SRAM-based TCAM
by selecting numbers of VBs in SRAM. It also investigated the
tradeoff among resources like throughput and memory efficiency in
constructing SRAM-based TCAM. The experimental results from the
implementation of a 72 × 28-bit REST on FPGA showed a dramatic
increase in memory efficiency using four VBs at the cost of a reduced
throughput. The system uses one 36-kbit SRAM and eight 64 × 1
distributed RAMs, which is equivalent to 3.5% and 25.3% of memory
resources compared with HP-TCAM and Z-TCAM, respectively.

To the best of our knowledge, this is the first brief to show the
relationship among the performance parameters embedded in the
TCAM emulation architecture.
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