
2168-7161 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2018.2820014, IEEE
Transactions on Cloud Computing

1

A New Lightweight Symmetric Searchable Encryption
Scheme for String Identification

Indranil Ghosh Ray, Yogachandran Rahulamathavan and Muttukrishnan Rajarajan, Senior Member, IEEE

Abstract—In this paper, we provide an efficient and easy-to-implement
symmetric searchable encryption scheme (SSE) for string search, which
takes one round of communication, O(n) times of computations over
n documents. Unlike previous schemes, we use hash-chaining instead
of chain of encryption operations for index generation, which makes it
suitable for lightweight applications. Unlike the previous SSE schemes for
string search, with our scheme, server learns nothing about the frequency
and the relative positions of the words being searched except what it
can learn from the history. We are the first to propose probabilistic
trapdoors in SSE for string search. We provide concrete proof of non-
adaptive security of our scheme against honest-but-curious server based
on the definitions of [12]. We also introduce a new notion of search
pattern privacy, which gives a measure of security against the leakage from
trapdoor. We have shown that our scheme is secure under search pattern
indistinguishability definition. We show why SSE scheme for string
search cannot attain adaptive indistinguishability criteria as mentioned
in [12]. We also propose modifications of our scheme so that the scheme
can be used against active adversaries at the cost of more rounds of
communications and memory space. We validate our scheme against two
different commercial datasets (see [1], [2]).

Index Terms—Cloud storage, Symmetric key, Searchable encryption,
hash-chain, lightweight cryptography.

I. INTRODUCTION

The cloud is designed to hold a large number of encrypted
documents. With the advent of cloud computing, growing number
of clients and leading organizations have started adapting to the
private storage outsourcing. This allows resource constrained clients
to privately store large amounts of encrypted data in cloud at low
cost. However, this prevents one from searching. This gives rise to a
newly emerging field of research, called searchable encryption (SE).
SE can be classified into symmetric searchable encryptions (SSE) and
asymmetric searchable encryptions (ASE). In this paper, we study the
SSE for string search. In the SSE, the client encrypts the data and
stores it on the cloud. It may be noted that client can organize the data
in an arbitrary manner and can maintain additional data structures to
achieve desired data efficiently. In this process, the initial client side
computation is thus as large as the data, but subsequent computations
to access data is less for both client and the cloud server.

Since huge volumes of documents are stored in a cloud server,
searching against a keyword may result into large number of docu-
ments, most of which are not intended, causing unnecessary network
traffic. This motivates the idea of searching against a string, which
allows the search to be more specific. Searching for string is a multi
keyword search where the ordering of keywords is preserved. So in
addition to the presence of all these keywords in a document, their
ordering and adjacency are to be taken care off while searching. So

Indranil Ghosh Ray is with the Department of Electrical and Computer En-
gineering, City, University of London. Email: Indranil.Ghosh-Ray@city.ac.uk

Yogachandran Rahulamathavan is with the Institute for
Digital Technologies, Loughborough University London. E-mail:
y.rahulamathavan@lboro.ac.uk

Muttukrishnan Rajarajan is with the Department of Electrical and Computer
Engineering, City, University of London. Email: r.muttukrishnan@city.ac.uk

Copyright (c) 2014 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

the index table needs to be prepared in such a way that the adjacency
information of the words can be preserved.

Although few works are available in the literature involving string
search (e.g. [15], [18], [22], [23], [25]), but most of them lack formal
security proof against the revised definitions of [12] and also expose
lots of informations to the server following the search (see Table I
of Section II). In the SSE scheme, the server is expected to learn
nothing about the search queries and data collections. SSE achieves
this by using symmetric cryptographic primitives instead of heavy
computations of public key encryption at the cost of small leakage
of information [12]. Here we take an example which will be extended
throughout the paper to illustrate our algorithms and data structures.

Example 1: Let us consider the text file ToyExample.txt in the
following figure, which is to be encrypted and uploaded to a public
cloud for future search.

This is a
demonstration text
for showing how line
breaking works.

ToyExample.txt

Let us consider the set of keywords as follows :
keywords = {this, is, a, demonstration, text, for, showing,
how, line, works, breaking}.
The client encrypts and outsources this file to the server and later he
wants to search a string “this is a demonstration”.

Remark 1. While generating the index, client converts all letters
into lower case and generate the index and trapdoors accordingly.

It may be noted that in traditional SE schemes, this is treated as
multi-keyword search for keywords : this, is, a, and demonstration.
The drawback of this approach is that the adjacency of the words is
not considered. However, the proposed string search not only looks
for those keywords, but also consider the order. We will continue
using this example in the subsections of Section IV to explain
different phases of our proposed scheme.

Our Contributions : In [12], authors proposed the first efficient
SSE construction, achieving sublinear search time and introduced the
notion of non-adaptive and adaptive indistinguishability definitions
of security for SSE. In the same work, authors introduced the idea
of history connected to a finite number of consecutive keyword
searches. We extended that definition for string search as is necessary
for security proof, and call it history-of-strings. Using this new
definition, we carryout the necessary changes in the definition of non-
adaptive indistinguishability [12] for SSE performing string search.
Finally we prove that our proposed scheme is secure under the
non-adaptive indistinguishability definition of SSE security against
honest-but-curious server. Although indistinguishability definition
of SSE security takes care of the the security of keyword from
index, however it does not provide security against the leakage from
trapdoor. Towards this we have introduced the notion of search
pattern security and have shown our scheme to be secure under search
pattern indistinguishability definition. The novelty of our scheme is

2168-7161 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2018.2820014, IEEE
Transactions on Cloud Computing

2

that although the index is generated by the client at the beginning,
and remains same for the same dataset through out the process and
thus static in nature, however the trapdoors are dynamic in nature,
making it more difficult for the eavesdroppers to understand the
search patterns and thus is more secure against attacks like replay
attacks, frequency analysis based attacks and many more.

Our scheme achieves searches in one communication round and
requires O(n) times computations for searching a string in n docu-
ments, which is optimal. Also the scheme requires no storage on
the client side and O(n) storage on the server side for the n-
document collection. Lastly, the scheme guarantees minimal leakage
in a sense that server directly knows nothing about the frequency of
the words being searched and their relative positions in the documents
except what it can learn from the history of search. Unlike the index
generation techniques (sequence of encryptions of a key) used in [12],
[15], we use the hash-chain technique, which is faster, and is thus
suitable for lightweight applications.

For the first time we address the problem of string search using
symmetric searchable encryption against the active adversary, who
by trick can place a document of his choice in the document
collections. We propose a modification of our scheme to deal with
active adversary securely at the cost of maintaining a list of keywords
at the client’s end and two rounds of communications.

We also implement the scheme against two different commercial
datasets, namely, a 20 MB DNA dataset [1] and a 19 MB TIMIT
speech data [2] and successfully achieve string search functionality
in encrypted domain.

Rest of the paper is organized as follows: In Section II we discuss
the related works in SSE. In Section III, we provide definitions
and preliminaries. In Section IV, we discuss our proposed scheme
in detail. In Section V, we analyze the security of our proposed
scheme. In Section VI, we discuss the time and space complexity of
our scheme and provide experimental results of our scheme against
commercial datasets (see [1], [2]). We conclude the paper in Section
VII.

II. RELATED WORKS

For the last ten years, searchable encryption has been the focus
for many leading research groups and several results were proposed
[3]–[10], [12], [16], [17], [19], [20], [24]. In [3], authors defined
computational and statistical relaxations of the existing notion of
perfect consistency and provided a new scheme that was statistically
consistent. They also proposed a transformation of an anonymous
identity based encryption scheme (IBE) to a secure public key
encryption with keyword search scheme (PEKS) that guarantees
consistency. In [4] authors presented as-strong-as-possible definitions
of privacy and some constructions for public-key base encryption
schemes where the encryption algorithm is deterministic. In the
same work, new methods were proposed for database encryption that
permit fast (i.e. sub-linear, and in fact logarithmic, time) search while
provably providing privacy that is as strong as possible subject to this
fast search constraint. The work in [4] also generalizes their methods
to obtain a notion of efficiently searchable encryption schemes which
permit more flexible privacy to search-time trade-offs via a technique
called bucketization. In [5], authors studied the problem of searching
on data that is encrypted using a public key system which they
referred as PEKS and provided several constructions. In [6], authors
show how to create a public-key encryption scheme that allows PIR
(private information retrieval) searching over encrypted documents.
Their solution was the first to reveal no partial information regarding
the users search (including the access pattern) in the public-key
setting and with small communication complexity. In [7], authors
defined and solved the problem of privacy-preserving multi-keyword

ranked search over encrypted data in cloud computing (MRSE).
They established a set of strict privacy requirements for such a
secure cloud data utilization system. Among various multi-keyword
semantics, they choose the efficient similarity measure of ”coordinate
matching,” i.e., as many matches as possible, to capture the relevance
of data documents to the search query. They also used ”inner product
similarity” to quantitatively evaluate such similarity measure. They
provide two MRSE schemes to achieve various stringent privacy
requirements in two different threat models. In [24], authors proposed
an efficient searchable encryption scheme for auction (SESA) in
emerging smart grid marketing, which is based on a public key
encryption with keyword search technique to enable the energy sellers
to inquire suitable bids while preserving the privacy of the energy
buyers. In [8] authors provided a systematic study of various attack
models against SSE based schemes.

Dynamic SSE was first considered by Song et al. [19], but no
solution with sublinear search time existed before the work of Kamara
et al. [13]. Recently, two new dynamic SSE schemes have been
proposed. The first one, by Cash et al. [9], which is an extension
of [10]. They showed that SSE is feasible on very large databases.
In [9], authors designed and implemented dynamic symmetric search-
able encryption schemes that efficiently and privately search server-
held encrypted databases with tens of billions of record-keyword
pairs. Their basic theoretical construction was for single-keyword
searches and which offers asymptotically optimal server index size,
fully parallel searching, and minimal leakage. In [10], authors pre-
sented another efficient SSE scheme which supports complex queries
involving multiple keywords. Similar scheme may be found in [17].
In [11], authors studied the trade-off between locality and server
storage size of SSE schemes.

In [12], authors introduced the idea of SSE with improved se-
curity definitions. They introduced the two most important security
definitions, namely non-adaptive indistinguishability and adaptive
indistinguishability. They also proposed SSE schemes for keyword
search which they proved to be secure under these new security
definitions.

In [16] authors studied the security provided by various encrypted
databases and presented a series of attacks that recover the plaintext
from encrypted database columns using only the encrypted column
and publicly-available auxiliary information. In [17], authors studied
efficient sub linear search techniques for arbitrary Boolean queries.
They considered scalable DBMS with provable security for all
parties, including protection of the data from both server (who stores
encrypted data) and client (who searches it), as well as protection of
the query, and access control for the query.

In [20], Stefanov et al. designed scheme for the first time to address
forward secrecy. However, the problem of malicious servers has not
been studied, except in [20], but, as we will see later, their proposition
is flawed. In [19], the search complexity is linear in the number of
documents stored in the database.

In [15], [18], [22], [23], [25], SSE schemes are developed for
string search. In [22], authors designed the first SSE scheme for
phrase search. This scheme works in two phases, each taking one
round of communication. In the first phase these documents are
identified which contains all words occurring in the phrase. In the
second round the candidate documents are checked to confirm the
existence of the phrase. In [15], authors proposed a scheme for
string search in non-adaptive setting where they used some additional
data structures and techniques (list, lookup tables, pseudo random
functions and hash-chains for word sequencing) to keep track of
position informations. In [15] the index generation technique is
similar to the index generation of [12] and requires a sequence of
encryption operation while forming index. In this paper, we achieve

2168-7161 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2018.2820014, IEEE
Transactions on Cloud Computing

3

the same non-adaptive security by using a sequence of hashing
instead of encryption operations which is faster and suitable for
lightweight applications. In [23] schemes are proposed that enables
efficient searching for an arbitrary string that may not be extracted
as keywords at the cost of leaking some information for the sake
of efficiency. In [25], authors introduced a SSE scheme that allows
both encrypted phrase searches and proximity ranked multi-keyword
searches to encrypted datasets on untrusted cloud. In [18], authors
propose a faster way of secure string search based on bloom filters.
It may be noted that our approach is based on index based scheme
and we prove it to be non adaptively secure according to the definition
introduced in [12].

TABLE I
PROPERTIES AND PERFORMANCES OF DIFFERENT SSE SCHEMES. SEARCH

TIME IS PER KEYWORD, WHERE n IS THE NUMBER OF DOCUMENTS.

Property SSE [12] PSS [22] [25] LPSSE [15] this
paper

String
search no yes yes yes yes

non-adaptive
security yes yes no yes yes

adaptive
security yes no no no no

security against
active adversary no no no no yes

client
storage no dictionary trusted

server no no

no of
rounds 1 2 2 1 1

storage
cost O(n) O(n) O(n) O(n) O(n)

no. of
encryptions
per keyword

O(n) O(n) O(n) O(n) 1

Here we summarize our contributions:
1. We propose a non-adaptively secure SSE scheme for string

search which takes one round of communication, O(n) times
of computation over n documents, O(n) additional memory in
the server side and no memory in the client side.

2. We provide a formal and proof to show that the scheme is non-
adaptively secure.

3. Although schemes of [12] is secure against non-adaptive indis-
tinguishability definition of security, but they does not guarantee
security against the leakage from trapdoor. Unlike the previous
SSE schemes, this is the first SSE scheme for string search which
generates probabilistic trapdoors which allows search pattern
privacy. We formally introduce this new notion of security in
SSE and show that our scheme is secure under search pattern
indistinguishability definition (see Definition 9).

4. In the previous SSE schemes for string search, the index tables
are generated by creating linked-lists corresponding to every
keywords, where informations related to occurrence of the
keyword in i-th document is stored in i-th node along with the
key, say ki+1, and is encrypted with a key, say, ki−1. Which
leads to a sequence of encryption functions for generating the
index and a sequence of decryption functions while searching.
We achieve the same non-adaptive security by applying sequence
of masked hashing, i.e., hash-chain, which is faster and suitable
for lightweight applications.

5. We propose modifications of our scheme so that it can be used
against active adversary.

III. NOTATIONS AND DEFINITIONS

Document collections and Data Structures: Let 4 =
{w1, w2, . . . , wd} be a dictionary of d words and P(4) be the

set of all possible documents which are collections of words. Let
D ⊆ P(4) be the collection of n documents D = (D1, D2, . . . , Dn).
Let id(Di) be the unique identifier for the document Di. We
denote the list of all n document identifiers in D by id(D), i.e.,
id(D) = {id(D1), . . . , id(Dn)}. Furthermore, let D(wj) be the
collection of all documents in D containing the word wj . A string s
of l words is an ordered tuple (w1, w2, . . . , wl). Let D(s) denotes a
collection of documents in D that contains the string s. It is easy
to check that D(s) ⊆

⋃l
i=1D(wi). We denote by δ(D), all the

distinct keywords connected to the document collection D. We denote
by fi,j the frequency of occurrence of the keyword wj in Di. Let
fj = max{fi,j |1 ≤ i ≤ n}. Also let f = max{fj |1 ≤ j ≤ δ(D)}.

Since the index is meant for server to perform search, we call it
server side index and denote it by SI. The generation of SI involves
generation of index table I along with the vectors Ir and Ic. I is a
n × |δ(D)| array where i-th row corresponds to i-th document Di
and j-th column corresponds to the word wj and (i, j)-th element is
denoted by I[i][j]. I[i][j] is a set of f number of λ-bit strings treated
as element of Zp, where p is a (λ)-bit prime, λ being the security
parameter.
Cryptographic Primitives: Here we define cryptographic primitives
that are needed for our SSE scheme for string search.

Definition 1. A symmetric key encryption scheme is a probabilistic
polynomial-time algorithms (Gen,Enc,Dec) such that:

1. The key-generation algorithm Gen takes as input the security
parameter 1λ and outputs a key k; we write this as k ←
Gen(1λ) (thus emphasizing the fact that Gen is a randomized
algorithm). We will assume without loss of generality that any
key k output by Gen(1λ) satisfies |k| > λ.

2. The encryption algorithm Enc takes as input a key k and a
plaintext message m ∈ {0, 1}∗, and outputs a ciphertext c. Since
Enc is randomized, we write this as c← Enck(m).

3. The decryption algorithm Dec takes as input a key k and a
ciphertext c, and outputs a message m . We assume that Dec is
deterministic, and so write this as m = Deck(c). It is required
that for every λ, every key k output by Gen(1λ), and every
m ∈ {0, 1}∗, it holds that Deck(Enck(m)) = m [14].

We typically denote an arbitrary negligible function by negl such
that for any arbitrary polynomial p(.), there exists an integer a such
that for all λ > a, negl(λ) < 1

p(λ)
[14].

Definition 2. private-key encryption scheme π = (Gen,Enc,Dec)
has indistinguishable encryptions under a chosen-plaintext attack
(or is IND-CPA secure) if for all probabilistic polynomial-time
adversaries A there exists a negligible function negl such that
Pr[PrivKcpa

A,π(λ) = 1] ≤ 1
2

+ negl(λ), where the probability is
taken over the random coins used by A, as well as the random coins
used in the experiment (for choosing the key, the random bit b, and
any random coins used in the encryption process) [14].

Throughout the paper we use the encryption and decryption
functions (Enck() and Deck()) which are from IND-CPA symmetric
encryption scheme π. We also use pseudo prime number genera-
tor [21], denoted by PPNG(1λ) which outputs a λ-bit probabilistic
prime number. In addition, we use message authentication code,
MACk(.) [14] which outputs in λ bits. We treat these outputs as
elements of Zp, where p is a λ bit prime. We write them simply as
MACkm(.) and Enckm(.). Also we use ⊕, 	 and ⊗ as the addition,
subtraction and multiplication operators in Zp. Also for a ∈ Zp, a−1

denotes the multiplicative inverse in Zp.
Before closing this section we provide in Table II the list of

notations discussed in this section.

2168-7161 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2018.2820014, IEEE
Transactions on Cloud Computing

4

TABLE II
SUMMARY OF NOTATIONS.

.

D document collection.
Di i-th document.
n number of documents.

id(Di) the unique identifier for the document Di.
id(D) list of document identifiers in the document collection.
D(wj) collection of all documents in D containing the word wj .
D(s) collection of all documents in D containing all words in the string s.
δ(D) all the distinct keywords connected to the document collection D.
fi,j the frequency of occurrence of the keyword wj in Di.
fj max{fi,j |1 ≤ i ≤ n}.
f max{fj |1 ≤ j ≤ δ(D)}.
Ir Ir contains list of inverted indexes for the list of keywords.
Ic Ir contains list of encrypted document identifiers.
SI server side index which is a triplet (I, Ir, Ic).

IV. OUR SCHEME

In this section we present our SSE scheme Πss for string search,
which is composed of four algorithms KeyGen, BuildIndex, Trapdoor
and Search. First we formally define the scheme. In the subsequent
subsections, we will discuss these algorithms in detail with illustra-
tions.

Scheme 1 (Πss). The scheme Πss is a collection of four polynomial
time algorithms (KeyGen, BuildIndex, Trapdoor, Search) such that:

1. KeyGen(1λ) : KeyGen is a probabilistic key generation algo-
rithm that is run by the client to setup the scheme (see Algorithm
1). It takes a security parameter λ, and returns a secret master
key km and a mask-key k′ which are to be kept privately at
client’s end and a session key ks which is to be shared between
client and the server. Client also shares a λ-bit prime p with the
server. The length of km, k′ and ks are polynomially bounded
in λ.

2. BuildIndex(km, k
′, ks, p) : BuildIndex is a probabilistic algo-

rithm run by the client to generate SI = (I, Ir, Ic). It takes km,
k′, ks, p and returns SI. Since BuildIndex is randomized, we
write this as SI ← BuildIndex(km,k′,ks,p)(s) (see Algorithm
2).

3. Trapdoor(km, ks, p, s) :Trapdoor is a probabilistic algorithm
run by the client to generate a trapdoor for a given string of
words s = (w1, w2, . . . , wl). It takes km, k′, ks, p and s as
input and outputs t = (t1, t2, . . . , tl), where ti is the trapdoor
corresponding to the word wi. Since trapdoor is randomized,
we write this as t ← Trapdoor(km,k′,ks,p)(s) (see Algorithm
3).

4. Search(SI, t) : Search is run by the server in order to search for
the documents in D that contain the string s. It takes ks, SI and
trapdoor t of the string s as inputs, and returns D(s), the set of
identifiers of documents containing the string s. Since this algo-
rithm is deterministic, we write it as D(s) = Searchks(SI, t)
(see Algorithm 4).

Structure of index: In the array I , informations are stored related
to positions of a word in a document. Recall that I[i][j] is a
set of f number of λ-bit strings. Now we describe how these
bit strings are obtained. To keep track of ordering of words in a
document, instead of position pointers, we use hash-chain. For a
l-word sentence (w1, . . . , wl) in a document, say Di, we first take
a random integer r ∈ Zp. Then we form a hash-chain (r1, . . . , rl)
such that r1 = r and for 2 ≤ j ≤ l, rj = MACks(rj−1). Then
we put ri + mskj in I[i][j], where mskj = MACk′(wj). It may
be noted that since km is privately kept at client’s end, server
cannot compute the mask. The masks are provided to the server

through the trapdoors. So for each time the word wi occurs in
Dj some integer from Zp is generated as mentioned above and
sorted in I[i][j]. Since |I[i][j]| can then reveal the frequency of
the word wj in Di, we insert additional (f − |I[i][j]|) number of
random numbers from Zp in each I[i][j] so that |I[i][j]| becomes f
for all i’s and j’s. We call it cell-padding. This stops the leakage
informations related to frequency and relative positions completely.
We call MACkm(wj) and index or client index of the word wj .
Ir[j] contains inverted index of the word wj , which is a λ-bit string.
Ic[i] is encrypted identifier of Di, where the key of encryption is km.

Secure update of index: Our index table is dynamic in a sense that
for each update of document collection the index can be updated
without disturbing the existing index just by adding a new row
corresponding to the new document where the entries in index are
computed as described above.

In the following subsections, we provide the algorithms for KeyGen,
BuildIndex, Trapdoor and Search in detail with illustrations.

A. Key Generation

Algorithm 1 Keygen
Input security parameter λ.
Output km, k′, ks and p.
km, k

′, ks ← Gen(1λ);
p← PPNG(1λ);

B. Index Generation

Algorithm 2 BuildIndex
Input km, k′, ks, p, D = (D1, . . . , Dn).
Output SI = (I, Ir ,Ic).

Form a collection W = {w1, . . . , wd} of all distinct words
occurring in D;
j ← 1;
while j ≤ d do
cij = MACkm(wj);
Ir[j] = ci−1

j ;
j ← j + 1;

end while
i← 1;
while i ≤ n do
Ic[i]← Enckm(id(Di));
For each sentence s = (ws1 , . . . , wsl) in Di, chose r ∈ Zp
randomly and form (r1, . . . , rl) such that r1 = r and for 2 ≤
j ≤ l, rj = MACks(rj−1). Associate rj with the word wsj .
j ← 1;
while j ≤ d do

set I[i][j] as all integers in Zp that are associated with the
word wj and add the mask mj = MACk′(wj) with all of
them in modulo p, i.e., in Zn;
if (|I[i][j]| < f) then

Inject (f − |I[i][j]|) number of random elements from Z∗p
in I[i][j];

end if
j ← j + 1;

end while
i← i+ 1;

end while

2168-7161 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2018.2820014, IEEE
Transactions on Cloud Computing

5

Example 1 (continued): (Illustration of BuildIndex)
Let the prime number be 31, i.e. p = 31. Also let us assume
that MACkm(this) = 18, MACkm(demonstration) =
9,MACkm(a) = 13, MACkm(text) = 15, MACkm(for) = 10
and MACkm(is) = 6. It may be noted that the first row
of server index table (see Table III), i.e., Ir represents
inverses modulo 31 of client index values. For example
MACkm(this)−1 mod 31 = 18−1 mod 31 = 19. Thus the
column corresponding to 19 is for the keyword “this”. Similarly
other values in the first rows are computed corresponding to other
keywords. Let the search query be “This is a demonstration”.
Now we demonstrate how BuildIndex algorithm generates
a portion of server side index corresponding to this search
query occurring in the document ToyExample.txt. Let the
encrypted file identifier corresponding to ToyExample.txt be
1221. For the word ’this’, first we select r1 = 10 ← Zp. So
the hash chain corresponding to the search query “This is a
demonstration” is

(
10,MACks(10),MAC2

ks(10),MAC3
ks(10)

)
and let this gives the sequence (10, 21, 5, 16). So
when masking is applied to this sequence, we get
(10 +MACk′(this), 21 +MACk′(is), 5 +MACk′(a),
16 +MACk′(demonstration)) and let this gives the sequence
(2, 21, 30, 4). Table III presents the server side index without
cell-padding (see the paragraph “Structure of index” in Section IV).

TABLE III
SERVER INDEX TABLE.

.

19 26 12 7 29
1221 2 21 30 4 7

Remark 2. In [15], authors have proposed a SSE scheme for string
search, which is similar to the non-adaptive SSE scheme of [12] for
keyword search with some additional data structures and techniques
(list, lookup tables, pseudo random functions and hash-chains for
word sequencing) being used to keep track of position informations.
However, with this approach, server learns the word frequency
and relative positions of the underlying document. The BuildIndex
algorithm (see Algorithm 2) is based on a new approach of inverted
index generation in modulo prime field. As opposed to the unmasked
hash-chains used in [15] for all words in a document, we use masked
hash-chain and cell-padding which stops leakage of informations
related to the relative positions of sentences and the frequency of
words. As opposed to the idea of chain of encryptions in [12], we
introduce the idea of masking for the security of index which is
faster. In earlier schemes, to search for a word in n documents,
n decryption operations were needed. In our scheme, all we need is
unmasking which is a subtraction operation in Zp for all entries of
the corresponding column.

C. Trapdoor Generation

Example 1 (continued): (Illustration of Trapdoor)
Let the search query be “This is a demonstration”. Let us consider
the computation of Trapdoor(this) = (t1, t2, t3) as follows:
let Enckm(this) = e = 20 and MACk′(this) = msk =
24; We know MACkm(this) = ci = 18. Now, Let t1 =
MACks (e⊕msk ⊕ ci) = MACks(62) = 14. Also let t2 =
e⊗ ci = 20× 18 = 19. Lastly, let t3 = e⊗msk = 20× 24 = 15.
Thus Trapdoor(this) = (t1, t2, t3) = (14, 19, 15). Similarly we
compute trapdoors for the key words ’is’, ’a’ and ’demonstration’.

Algorithm 3 Trapdoor
Input w = (wc1 , wc2 , . . . , wcl), km, k′ ks, p, MACk(.).
Output t = (t1, . . . , tl).
j ← 1;
while j ≤ l do
e = Enckm

(
wcj
)
;

msk = MACk′
(
wcj
)
;

ci = MACkm(wcj);
tj1 = MACks (e⊕msk ⊕ ci);
tj2 = e⊗ ci;
tj3 = e⊗msk;
tj = (tj1 , tj2 , tj3);
j ← j + 1;

end while

Remark 3. Although the index table is static, i.e, created once at the
beginning, but for every instance of search we compute probabilistic
trapdoors and using these, we end up searching successfully from the
index table. It may be noted that the probabilistic algorithm used in
the BuildIndex is only for obtaining encrypted file pointers. Once the
keys are fixed, Ir[j]’s and the entries in I[i][j]’s before cell-padding
are deterministic. Let t = (tj1 , tj2 , tj3) be the trapdoor correspond-
ing to the word wj and Ir[j] contains the corresponding inverted
client index. So Ir[j] = ci−1 in Zp, where ci = MACkm(wj). Note
that tj2 = e× ci, where e is the random part which is obtained only
when tj2 is multiplied with Ir[j]. Once e is obtained, msk can be
obtained as msk = tj3 × e−1. The correctness is asserted from the
check (MACks(e⊕msk ⊕ ci) == tj1).

D. Searching

Algorithm 4 Search
Input t = (t1, . . . , tl), SI, ks, MACk(.).
Output encrypted file pointers, a list of encrypted document

pointers;
the list column and column msk are set empty;
i← 1;
while i ≤ l do
j ← 1;
while j ≤ d do
e = (ti2 ⊗ Ir[j]);
m = ti3 ⊗ e−1;
if (MACks

(
e⊕m⊕ Ir[j]−1

)
== ti1) then

set mask of j th column as msk = m, add j to column
and msk to column msk;

end if
j ← j + 1;

end while
i← i+ 1;

end while
the list encrypted file pointers is set empty;
i← 1;
while i ≤ n do

if (there exists l integers p1, . . . , pl such that (pj ⊕
column msk[j]) ∈ I[i][column[j]], 1 ≤ j ≤ l and
MACks(pj) == pj+1 for 1 ≤ j ≤ l − 1) then

add Ic[i] to encrypted file pointers.
end if
i← i+ 1;

end while

2168-7161 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2018.2820014, IEEE
Transactions on Cloud Computing

6

Example 1 (continued): (Illustration of Searching)
After receiving the trapdoor for the word ’this’, server identifies the
column in the server index table corresponding to the word ’this’ in
the following way:
It may be noted that when the column index is 1, we have
(t2 ⊗ Ir[1]) = 19 ⊗ 19 = 20 = e. Also ti3 ⊗ e−1 = 24 = msk.
Thus MACks

(
e⊕msk ⊕ Ir[j]−1

)
= MACks(62) = 14 = t1.

Thus the column corresponding to index 1 is identified for the
trapdoor (14, 19, 15) which was sent for the keyword ’this’. Sim-
ilarly the column indexes are identified for the other keywords
which are 2, 3 and 4 for the words ’is’, ’a’ and ’demonstration’
respectively. Note that server can retrieve mask corresponding to
keyword ’this’ which is msk = 24 = ti3 ⊗ e−1. Similarly
server can compute masks for other words as well. So from the
sequence obtained from the server index table, i.e., (2, 21, 30, 4),
server can compute the sequence (10, 21, 5, 16) by subtracting cor-
responding masks. Now server forms the hash chain (10, 21, 5, 16)
=
(
10,Macks(10),Mac2ks(10),Mac3ks(10)

)
which tells that this

string exists in the document whose encrypted identifier is 1221.
Server returns this to client which on decryption yield ToyExam-
ple.txt, i.e. the filename containing the queried string.

Remark 4. In Algorithm 4, the input (t1, . . . , tl) corresponds to the
l-word search string. In the index table, there are |δ(D)| number
of columns, out of which the l columns corresponding to t1, . . . , tl
are to be identified and also the corresponding column masks are
to be computed for searching. This is done in the first while loop
of the search algorithm (Algorithm 4). It may be noted that the
column indexes corresponding to t1, . . . , tl are stored in a list
variable, named, column and the corresponding masks are stored
in a list variable, named, column msk. To check for the existence
of the string in a file corresponding to, say, i-th row of the index
table, the second while loop of the algorithm unmasks the entries
corresponding to I[i][column[1]], . . . , I[i][column[l]] and checks if
there exists a matching pair (p1, p2), where p1 ∈ I[i][column[1]]
and p2 ∈ I[i][column[2]] such that p2 = MACks(p1). This process
is repeated for (l−1) times for all (column[i], column[i+1]) pairs
(1 ≤ i ≤ l−1) provided such matching pairs (p1, pi+1) are obtained
at each of the steps such that pi+1 = MACks(pi). If (l − 1) steps
are completed successfully, then that confirms the existence of the
string in the file and the corresponding file identifier is added in the
list named encrypted file pointers.

In this section, we described the algorithms for key generation,
index generation, trapdoor generation and searching for our scheme
Πss. For better security, probabilistic trapdoor is desirable. Since
the index is static, searching using probabilistic trapdoor and static
index is difficult. Unlike previous schemes, our scheme produces
probabilistic trapdoors and search algorithm accurately detects the
string despite having static index. The correctness of this computation
is explained in Remark 3. In the next section we provide the security
of our scheme Πss.

V. SECURITY ANALYSIS

Although few SSE schemes are available for string search, but most
of them lack formal security proof against the revised definitions
of [12] and also leak lots of informations beyond what is leaked
from history [12]. In Subsection V-A, we provide a formal proof
of non-adaptive security of our scheme against honest-but-curious
server. In Subsection V-B, we propose modifications of our scheme
to protect against active adversaries at the cost of more rounds of
communications and memory space.

A. Honest but curious server

An honest-but-curious server follows the protocol and takes no
actions beyond those of an honest server, and attempts to learn
about the plaintext of documents or terms that were queried. The
idea of non-adaptive security for SSE scheme for an honest-but-
curious server was first introduced in [12]. In order to explain the
non-adaptive security, we first provide the definition of history and
trace.

Definition 3. (history) [12] Let 4 be a dictionary and D ⊆ P(4)
be a document collection over 4. A q-query history over D is a tuple
H = (D, w) that includes the document collection D and a vector
of q keywords w = (w1, w2, . . . , wq).

The access pattern induced by a q-query history H = (D, w) is
given by α(H) = (D(w1), . . . ,D(wq)) [12]. The search pattern
corresponding to q-query history H is a q × q binary matrix
σ(H) = (hi,j) such that hi,j = 1 if wi = wj [12].

Definition 4. (trace) [12] Let 4 be a dictionary and D ⊆
P(4) be a document collection over 4. The trace induced
by a q-query history H = (D, w) is a sequence τ(H) =
(|D1|, |D2|, . . . , |Dn|, α(H), σ(H)) comprised of the lengths of the
documents in D.

We introduce the notion of history-of-string by extending the
definition of history for string which is crucial for our security proof.

Definition 5. (history-of-string) Let 4 be a dictionary and D ⊆
P(4) be a document collection over 4. A q-query history over D is
a tuple Ĥ = (D, s) that includes the document collection D and a
vector of q strings s = (s1, s2, . . . , sq).

Let for the vector of q strings s = (s1, . . . , sq), there are only
q′ distinct words, i.e., |δ(s)| = q′ and let these distinct words be
w1, . . . , wq′ . The access pattern induced by a q-query history-of-
string Ĥ = (D, s) is given by α(Ĥ) = (D(w1), . . . ,D(wq′)) [12].
The search pattern corresponding to such a q-query history-of-string
Ĥ is a q′ × q′ binary matrix σ(Ĥ) = (hi,j) such that hi,j = 1 if
wi = wj [12]. Similar to trace, we define trace-of-history-of-strings
as follows:

Definition 6. (trace-of-history-of-strings) Let 4 be a dictionary and
D ⊆ P(4) be a document collection over 4. The trace induced
by a q-query history-of-strings Ĥ = (D, s) is a sequence τ(Ĥ) =(
|D1|, |D2|, . . . , |Dn|, α(Ĥ), σ(Ĥ)

)
comprised of the lengths of the

documents in D.

Lemma 1. Let for the vector of q strings s = (s0,1, . . . , s0,q),
there are only q′ distinct words, i.e., |δ(s)| = q′ and let these
distinct words be w0,1, . . . , w0,q′ . Let Ĥ0 = (D0, s0,1, . . . , s0,q)
and also let H0 = (D0, w0,1, . . . , w0,q′). Similarly define Ĥ1 =
(D1, s1,1, . . . , s1,q) and H1 = (D1, w1,1, . . . , w1,q′). It is easy to
check that τ(Ĥ0) = τ(Ĥ1) implies τ(H0) = τ(H1).

Now we provide the definition of non-adaptive indistinguishability
security and non-adaptive semantic security for SSE from [12] with
slight modifications for strings.

Definition 7. (Non-Adaptive Indistinguishability Security for SSE)
Let SSE = (Gen,Enc, Trpdr, Search,Dec) be an index based
SSE scheme over dictionary 4, λ being the security parameter,
and A = (A0,A1) be a non-uniform adversary. Consider the

2168-7161 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2018.2820014, IEEE
Transactions on Cloud Computing

7

probabilistic experiment

IndA,SSE(λ) :

K ← Gen(1λ)

(STA, Ĥ0, Ĥ1)← A1(1λ)

b← {0, 1}
parse Ĥb as (Db, sb)

(SIb, cb)← EncK(Db)

for 2 ≤ i ≤ q
tb,i ← Trpdrks(sb,i)

let tb = (tb,1, . . . , tb,q)

b′ = Aq+1(STA, SIb, cb, tb)

output 1 if b′ = b else output 0

with the restriction that τ(D0, s0,1, . . . , s0,q) =
τ(D1, s1,1, . . . , s1,q), STA being a string that captures A1’s
state. SSE is said to be secure in the sense of non-adaptive
indistinguishability if for all polynomial size adversaries
A = (A0,A1), Pr[IndSSE,A(λ) = 1] ≤ 1

2
+ negl(λ), where

probability is taken over the choice of b and coins of Gen and Enc.

Remark 5. Let for the vector of q strings s = (s0,1, . . . , s0,q)
in the definition of non-adaptive indistinguishability, there are only
q′ distinct words, i.e., |δ(s)| = q′ and let these distinct words be
w0,1, . . . , w0,q′ . Let Ĥ0 = (D0, s0,1, . . . , s0,q) and also let H0 =
(D0, w0,1, . . . , w0,q′). Similarly define Ĥ1 = (D1, s1,1, . . . , s1,q)
and H1 = (D1, w1,1, . . . , w1,q′). From Lemma 1, τ(Ĥ0) = τ(Ĥ1)
implies τ(H0) = τ(H1). Thus the non-adaptive indistinguishability
definition of SSE for string search, i.e., Definition 7 implies non-
adaptive indistinguishability of SSE for keyword search introduced
by [12].

Definition 8. (Non-Adaptive Semantic Security for SSE) Let SSE =
(Gen,Enc, Trpdr, Search,Dec) be an indexed based SSE scheme
over dictionary 4, λ being the security parameter, and A be
an adversary, S being the simulator. Consider the probabilistic
experiments

RealSSE,A(λ) :

K ← Gen(1λ)

(STA, Ĥ)← A1(1λ)

parse Ĥ as (D, s)

(SI, c)← EncK(D)

for 1 ≤ i ≤ q
ti ← Trpdrks(si)

let t = (t1, . . . , tq)

output v = (SI, c, t) and STA

SimSSE,A,S(λ) :

(Ĥ,STA)← A(1λ)

v ← S(τ(Ĥ))

output v = (SI, c, t) and STA

SSE is said to be semantically secure if for all polynomial size
adversaries A, there exists a polynomial size simulator S, such
that for all polynomial size distinguishers D, Pr[D(v,STA) = 1 :

(v,STA) ← RealSSE,A(λ)] − Pr[D(v,STA) = 1 : (v,STA) ←
SimSSE,A,S(λ)] ≤ negl(λ), where probability is taken over the
choice of b and coins of Gen and Enc.

Here we recall one result from [12] which we use in proving non-
adaptive security of our scheme.

Theorem 1. Non-adaptive semantic security of SSE implies non-
adaptive indistinguishability of SSE [12].

Remark 6. Let max be the number of times the smallest keyword can
be fitted into the largest of all n encrypted documents. We observe that
max is an upper bound of maximum number of times a particular
keyword may occur in a document i.e. f (see Section III). We use
this max to simulate f .

Theorem 2. Πss is non-adaptively secure SSE scheme.

Proof: To prove non-adaptive indistinguishability of Πss, from
Theorem 1, it is sufficient to show that Πss is non-adaptively
semantically secure. To show that we first describe a polynomial size
simulator S such that for all polynomial size adversariesA, the output
of RealSSE,A(λ) and SimSSE,A,S(λ) are indistinguishable. Let the
simulator S on receipt of τ(Ĥ) generates v∗ = (SI∗, c∗, t∗) =
((I∗, I∗r , I

∗
c), (t∗1, . . . , t

∗
q), (c

∗
1, . . . , c

∗
n)) as follows:

1. (simulating SI∗)

a. If q > 0, set |δ(D)| = q. Choose uniformly at random
the keys k∗s and k∗m. From the trace, find all distinct words
that occur in q strings. Let this collection be {w1, . . . , wq′}.
Generate a n×q′ array I∗. Assign I∗r [i] = MACk∗m(wi)

−1

mod p. Also compute I∗c [j]← Enck∗m(id(Dj)) for j = 1
to n.

b. For each string sj = (wj,1, . . . , wj,l) and document
Di containing the string, find the masked hash-chain
(r1, . . . , rl) as mentioned in Section IV.

c. For each I∗[i][j] such that |I∗[i][j]| < max, run MACk∗s ()
(max− |I∗[i][j]|) many times on different random values
from Zp and store the outputs at I∗[i][j].

d. If q = 0, we allocate n ×max (see Remark 6) array for
I and fill up the corresponding cells with max number of
different random values from Zp.

2. (simulating t∗ = (t∗1, . . . , t
∗
q)) Compute t∗i corresponding to the

string si = (wi,1, . . . , wi,li) as t∗i = (t∗i,1, . . . , t
∗
i,li

), where
t∗i,j = (t∗i,j,1, t

∗
i,j,2, t

∗
i,j,3) corresponding to the word say wj , is

computed as follows:

e = Enck∗m (wj) ,msk = MACk′∗ (wj) ,

ci = MACk∗m (wj) ,

t∗i,j,1 = MACk∗s (e⊕msk ⊕ ci) ,
t∗i,j,2 = e⊗ ci, t∗i,j,3 = e⊗msk.

3. (simulating c∗ = (c∗1, . . . , c
∗
n)) Set c∗i to a |Di| bit string chosen

uniformly at random.

Now we show that each element of v∗ is computationally indis-
tinguishable from its corresponding element of v to a distinguisher
D that is given STA.

1. (SI and SI∗) I∗r [i] = MACk∗m(wi)
−1 mod p. Since

MACk∗m(wi) and MACkm(wi) are indistinguishable, so is I∗r
and Ir . As with all but negligible probability, STA does not
include the key km and π, the encryption scheme, is IND-CPA
secure, this guarantees that each element of Ic is indistinguish-
able from its counter part in I∗c . Due to the pseudo randomness
of MAC() and all but negligible probability, STA does not
include the key km, we argue that each of the max number

2168-7161 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2018.2820014, IEEE
Transactions on Cloud Computing

8

of entries in I[i][j] is indistinguishable from its counterpart in
I∗[i][j].

2. (t and t∗) Since computation of t involves computation using
MAC() and Enc() and with all but negligible probability,
STA does not include the key (km, k

′, ks) so from the pseudo-
randomness of MAC() and IND-CPA security of π, t and t∗

are indistinguishable.
3. (c and c∗) As with all but negligible probability, STA does

not include the key (ks, km) and π is IND-CPA secure, this
guarantees that each element of c is indistinguishable from its
counter part in c∗.

The non-adaptive indistinguishability guarantees the privacy of the
keyword from the index. However, it does not guarantee any security
against leakage of keyword from trapdoor. Towards this we introduce
the notion of search pattern privacy.

Definition 9. (Search Pattern Indistinguishability) Let SSE =
(Gen,Enc, Trpdr, Search,Dec) be an index based SSE scheme
over dictionary 4, λ being the security parameter, and A be a non-
uniform adversary. Consider the probabilistic experiment:

SPISSE,A(λ) :

K ← Gen(1λ); (STA, H)← A(1λ)

parse H as (D, s)

(SI, c)← EncK(D)

let w = (wb1 , . . . , wbq)

for 1 ≤ i ≤ q
tbi ← Trpdr(wbi)

let t = (tb1 , . . . , tbq)

w0, w1 ←4 such that |w0| = |w1|
b← {0, 1}
tb ← Trpdr(wb)

b′ ← ATrpdr(K;.)(1λ,K, tb, w, t,H,STA)

if b = b′ then return 1 else return 0

The advantage of A in the above experiment is defined as
AdvSPPA,SSE(λ) = |Pr[SPISSE,A(λ) = 1] − 1

2
|. SSE is said to be

secure against search pattern indistinguishability if for all polynomial
size adversaries A, AdvSPPA,SSE(λ) ≤ negl(λ).

Theorem 3. Πss is search pattern secure scheme against chosen
trapdoor attack in random oracle model.

Proof: We construct a simulator SEnck(.), that has the encryp-
tion oracle for underlying private key encryption which is assumed to
be IND-CPA secure under the Definition 2. The simulator S simulates
the challenger and interacts with the adversary A as follows:

1. (simulating msk∗ and ci∗) : Whenever A queries for trapdoor
corresponding to some word, say wi, S maintains two lists,
namely list1 = 〈wi, h1

i 〉 and list2 = 〈wi, h2
i 〉 for msk and

ci respectively which are initially empty. When A queries for
trapdoor of w , S responds as follows:
if wi is in list1 then it sets msk = h1

i , else it choses h1
i ←

{0, 1}λ. It makes an entry 〈wi, h1
i 〉 in list1 and sets msk∗ =

h1
i . Similarly it simulates ci∗ = h2

i .
2. (simulating ti1 , ti1 , ti1) : S asks the actual challenger to com-

pute e = Enckm(w) (to S this is the encryption oracle). It then
performs the following computations:
ti2 = e ⊗ ci∗; ti3 = e ⊗ msk∗; tj = (tj1 , tj2 , tj3); It sets
ti1 = h where h is an entry corresponding to e⊕msk∗ ⊕ ci∗
in list1.

challenge phase : A produces a pair of challenge words w0 and
w1.

I. S computes msk∗i and ci∗i for i = 0, 1.
II. S randomly selects b← {0, 1}.

III. S responds to the challenge t = (t1, t2, t3) where eb =
Enckm(wb) (using actual challenger) t2 = eb ⊗ ci∗b ; t3 =
e ⊗msk∗b ; t1, msk∗b are taken from list1 and ci∗b from list2
as mentioned earlier.

IV. A can continue to issue trapdoor queries for words.

Output phase : Eventually A outputs the guess b′{0, 1}. Then S
outputs b′.

So A and S’s point of view to the event [b = b′] is same, i.e.,
Pr[b = b′] = Pr[SPISSE,A(λ) = 1] = Pr[PrivKcpa

S,π(λ) = 1].
But from the assumption, Pr[PrivKcpa

S,π(λ) = 1] ≤ 1
2

+negl(λ).
So Pr[SPISSE,A(λ) = 1] ≤ 1

2
+ negl(λ). Thus

AdvSPPA,SSE(λ) = |Pr[SPISSE,A(λ) = 1]− 1
2
| ≤ negl(λ).

Remark 7. It may be noted that if adversary is given the search
oracle, it can distinguish the two trapdoors after the search. This is
just because adversary can include w0 and w1 in the previous queries
to get legitimate trapdoors and may detect the columns of index
table corresponding to these words by performing search. Finally, by
searching with challenge trapdoor tb, adversary can know to which
column and therefore to which word this trapdoor is associated with.
So long as we are dealing with honest-but-curious adversary, we need
not to assume that adversary may search. Server can always search
and maintain a history, which is unavoidable. In the next section, we
deal with adversaries who can make server search.

Remark 8. It may be noted that the trapdoor function introduced
in [12] was deterministic. To be more particular, for a keyword, say
w, their trapdoor function is T (w) = (πz(w), fy(w)), where π is a
pseudo random permutations and f is a pseudo random function. So,
from the properties of π and f , given T (w), it is computationally
hard to get back w. But, since π and f are deterministic, T (w)
is strictly connected to w, i.e., each time the trapdoor function will
yield same footprint for the input w, which stops it from being search
pattern secure (see Definition 9).

Remark 9. While dealing with string search, designing a SSE scheme
satisfying adaptive-indistinguishability-security definition of [12]
seems impossible. This is because to generate an index in advance
which is consistent with future search, one unavoidable assumption
needed is the presence of all possible strings in each document.
This can be done by considering all permutations of keywords for
every document. More specifically, we observe that the consistent
index generation for string search can be done by allowing (max)!
number of entries of each keyword and each document, where max
is the estimated number of distinct keywords. But simulating such an
index SI∗ using Sim comes with a cost of exponential size in max
compared to the index that may be generated using Real and thus
SI∗ can be easily distinguished from SI.

B. Active Adversary

Injection attacks refer to a broad class of attack vectors that allow
an attacker to supply untrusted input to a program. In [8], authors
refer to these attackers as active adversary. More precisely, an active
adversary is one who can carryout a chosen-document attack in
which it tricks the client into including a chosen document in the
document set. We call it a spam document and denote it by Ds. Since
server knows the contents of the spam document, whenever server
detects the access pattern that involves the access of Ds, server may
guess with significant probability (1

δ(Ds)
) the words corresponding

2168-7161 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2018.2820014, IEEE
Transactions on Cloud Computing

9

to these columns of I that were being selected during the search by
maintaining a book-keeping of columns being selected after every
search.

There can be two cases. Firstly, server may manage to insert Ds
into clients document collections D before the client’s processing of
D to generate (SI, c). To address such cases of spam detection is
beyond the scope of this work and may be dealt by enabling spam
filter. In the second case the client prepares and uploads (SI, c) to
a server depending on D which does not contain spam document.
Client updates the document collections D and corresponding (SI, c)
whenever new documents are added or deleted. Server, after some
time, manages to inject the spam document Ds without the knowl-
edge of client. In this case we propose how Πss can be modified
to resist such chosen document attack but at the cost of increased
rounds of search.

Modification of I : Let initially there were n documents in D and
D = {D1, . . . , Dn} and also let δ(D) = {w1, w2, . . . , wd}. Let after
a modification of D now there are n′ = n+ 1 number of documents
and the newly added document is a spam document. We denote this
modified document collection by D′. Let W = δ(D′) ∩ δ(D) be the
set of common words. It can be observed that if the search query
string consists words that are from δ(D) \ W , then access pattern
will not involve newly added document. Also if the search string
involves words that are only from D′ \W , access pattern does not
involve previous documents. An access pattern involving new and old
documents is possible if and only if all the words in the search string
are from W . Note that client can always compute W if it maintains
list of words say CI. For each of the words in w ∈ W client treats
these words as w||1 to distinguish them from w which already exists
in CI. Next, client adds all words of the form w||1 and words from
δ(D)′ \W in CI and adds new columns in I for all newly added
words. Client adds a new row in I for the newly added document
and computes entries in each cell of the newly added row same as
before.

Two round communication for search : To search for a string
(w1, . . . , wl), such that all wi’s are from W , client prepares another
search string namely (w1||1, . . . , wl||1) and performs two searches
for (w1, . . . , wl) and (w1||1, . . . , wl||1), one by one. With this
approach the access pattern does not mix old documents with the
newly added one.

VI. PERFORMANCE ANALYSIS

In this section we provide performance results of our proposed
scheme Πss. First we study the theoretical search time and index
size needed in Lemma 2 and Lemma 3 respectively.

Lemma 2. Using Πss, the search time for a query of l-word string is
O(|δ(D)| × l×n) operations in Zp, where the underlying document
collection is D having n documents.

Proof: Recall that in the index table there are |δ(D)| number of
columns corresponding to |δ(D)| distinct keywords. Since Πss uses
non-deterministic trapdoor, searching for column corresponding to
each keyword takes O(|δ(D)|) number of operations in Zp. After l
columns are found, for each document, MAC() may be run to check
for the adjacency of words l times, each of which takes constant time
O(1). Hence the result follows.

Lemma 3. The index size needed for implementing Πss is
O(n× |δ(D)| × f × λ).

Proof: Index is a n × |δ(D)| array where each cell contains f
number of entries from Zp, each being λ bit string as p is a λ bit
prime.

Will parallelization improve the performance? We note that, by
the construction of index, a row of the index, which corresponds
to a document in the document collection, is independent of other
rows and thus processing with one row has no overlap with that
involving other rows. This crucial property enables the searching
algorithm (Algorithm 4) conformable for parallelization. Currently
the searching algorithm is linear in n, the number of documents (see
Lemma 2). On parallelization of searching into t number of threads,
each assigned with n′ = n

t
rows, the searching will be linear in n′

and since each of these threads will run in parallel, from Lemma 2 the
complexity will be O(|δ(D)|×l×n′) resulting into huge performance
gain, specially in high load environments..

Now in the following subsections, we provide comparison of our
scheme with schemes in [18] and [23] in terms of storage and sever
side computation in the setup of string search. It may be noted that
unlike these schemes, we don’t need any storage of data owner.
Moreover, unlike our scheme, none of these schemes are proven to be
secure under the newly introduced definitions of non-adaptive security
of [12].

A. Comparison with bloom-filter based scheme of [18]

In [18], authors proposed phrase search using bloom-filters. We
start with converting their results related to complexity analysis
in terms of our parameters for making it conformable for the
comparison. In [18], authors used N , x, q, b2, b3 and k to denote
number of documents, number of distinct keywords, number of words
in the query, number of keyword pairs, number of keyword triplets
and number of bloom filter hash functions respectively. Converting
into our notation, we have N ≈ n, x ≈ |δ(D)| and q ≈ l. Also
b2 = O(|δ(D)|2) and b3 = O(|δ(D)|3).
Cloud side computation. In [18], authors showed that the computa-
tional cost of cloud server is #c = Mod(k(q− 2)N) +And(Nb3).
Also from [18], to insert |δ(D)| keywords in a m-bit bloom-
filter, the minimum false-positive probability p is achieved when
k = m

|δ(D)| ln(2) and m = − |δ(D)|.ln(p)
(ln(2))2

. Unlike the scheme of [18],
in our scheme the probability of false positive rate is zero. So even
when the scheme of [18] achieves minimum false positive rate, the
cost of computation in asymptotic notation becomes

#c = Mod(k(q − 2)N) +And(Nb3)

= O

(
m

|δ(D)| × l × n
)

+O
(
n× |δ(D)|3

)
= O

(
n× |δ(D)|3

)
Since |δ(D)|2 � l, the scheme in [18] is more expensive in terms
of cloud server computation.
Cloud side storage. In [18], authors showed that the storage at cloud
server is #s, where,

#s = x× (log2(x) +N) +N((b2 + b3)

= O
(
|δ(D)| × (log2(|δ(D)|) + n) + n((|δ(D)|2 + |δ(D)|3)

)
= O (|δ(D)| × log2(|δ(D)|)) +O

(
n× |δ(D)|3

)
= O

(
n× |δ(D)|3

)
We observe that in the setup of string search where we consider

all words as key words, λ × f � |δ(D)|2. So the scheme in [18]
incurs more storage in cloud compared to our scheme.

B. Comparison with TSet based scheme of [23]

In the TSet based approach of string search of [23], the computa-
tional cost of server side searching is exponential in |t| × (m − 1)

2168-7161 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2018.2820014, IEEE
Transactions on Cloud Computing

10

number of multiplication operations in Zq(see [23]), where |t| is
the number of outputs of TSet and m is the length of query
and log2(q) = λ is the security parameter. Also from the TSet
construction, which incorporates the combinations of keywords, |t|
itself is exponential on the distinct keywords, which, in our notation,
is |δ(D)|. Thus the cost of sever side searching is exponential in
|δ(D)| which is linear in our case (see Lemma 2).

C. Experiment on Speech Data

From Lemma 2, it is clear that search time is linear in number
of documents. Now we validate our scheme against two different
commercial datasets ([1], [2]). We build a symmetric search engine
based on the scheme Πss using Java in linux platform. The imple-
mentation is done on Asus A Series Core i3 laptop ((4 GB/ 1 TB
HDD) 90NB0652-M32310 XX2064D). We use Java based ‘Jpair’
library for the cryptographic primitives.

The TIMIT speech corpus [TIMIT] of speech was collected in 1993
as a speech data resource for acoustic phonetic studies and has been
used extensively for the development and evaluation of ASR studies.
TIMIT contains broadband recordings of 630 speakers of eight major
dialects of American English, each reading ten phonetically rich sen-
tences. The corpus includes time-aligned orthographic, phonetic and
word transcriptions as well as a 16-bit 16 kHz speech waveform file
for each utterance. TIMIT was designed to further acoustic-phonetic
knowledge and automatic speech recognition (ASR) systems. It was
commissioned by DARPA and worked on by many sites, including
Texas Instruments (TI) and Massachusetts Institute of Technology
(MIT), hence the corpus’ name.

Phone recognition in TIMIT has more than two decades of intense
research behind it and its performance has naturally improved with
time so that it can be useful for researchers, professionals and
engineers specialized in speech processing when considering future
research directions. TIMIT is the most accurately transcribed speech
corpus in existence as it contains not only transcriptions of the text
but also contains accurate timing of phones calls. This is impressive
given that the average English speaker utters 14-15 phonic sounds
(equivalent to phone symbols) a second. A more detailed description
of the data may be obtained at [2].

D. Performance against Speech Dataset

The performances of string search on the speech data [2] are
compared for two modes of implementations. The implementation
of the scheme using masked hash-chain and padding using random
values from Zp, f number of times as mentioned in Section IV
is referred to as ‘no leakage’. In another implementation we use
masking over integers denoting word positions without padding. Here
the frequency as well as the positions of the searched words in the
documents are leaked, but after the search is done. So we refer to
this as ‘partial leakage’.

Figure 1 shows a comparison of index generation time for these
two methods. Figure 2 shows a comparison of search time for
these two methods. Search time mainly depends on the number of
documents through which the search is to be performed. So far we
have performed search on a string of length 5. So Figure 2 shows
how search time varies with respect to the number of documents.
Unlike [15], in our implementation, search time depends not only
on the number of documents returned, but also on the number of
documents in which the keywords to be searched are present. This is
due to the fact that for efficient implementation, we first check if all
keywords are present in a document. If all key words are present in
a document then and only then we check for the adjacency. It may
be noted that the major share of search time is taken by checking

adjacency. So search time may also increase in these cases where all
keywords are present in many documents, but not in a consecutive
fashion, yielding zero number of documents to be returned.

0 1,000 2,000 3,000 4,000
1

2

3

4

number of documents

Ti
m

e
(s

ec
on

ds
)

hash-chaining
position integers

Fig. 1. Index generation graph comparing index generation time using padded
and masked hash chain technique with index generation time using position
integers

0 1,000 2,000 3,000 4,000

5 · 10−2

0.1

0.15

number of documents

Ti
m

e
(s

ec
on

ds
)

hash-chaining
position integers

Fig. 2. Search time graph comparing the search time using hash chain
technique with the search time using position integers

E. Experiment on DNA Data

We have implemented our algorithm for searching sequences of
SNP’s (Single Nucleotide Polymorphism) in large genome databases
which is available at [1]. SNP represents a difference in a nucleotide
which is a single DNA building block. In the data set there are 10000
binary DNA sequences, each of which is 2185-bit long. We assume
that the bit pattern to be searched is of length at least 8 and encode
the binary sequences by using a set, K, of 28 i.e. 256 distinct symbols
corresponding to every 8-bit of the data starting from the beginning.
We treat each of these encoded sequences over K as different strings
over K. Search time in a document depends on the depth of the
strings and the number of sequences. Since these sequences are very
long compared to the speech data of Subsection VI-C, time taken for
searching over this dataset is more compared to the time taken for

2168-7161 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2018.2820014, IEEE
Transactions on Cloud Computing

11

searching over speech data. We apply our scheme πpss on this data to
search a string of length 3 in the encrypted domain, which is a same
as searching 24-bit binary string in the binary sequence data. Due to
huge size of the DNA data, in the implementation, we use directly
integer pointers without masking and hash-chaining as otherwise the
size of index is becoming larger than the available memory.

F. Performance against DNA Dataset

Figure 3 illustrates the time needed to generate index table for
the DNA sequence, where we plot the time (in seconds along Y-
axis) needed against number of encrypted DNA’s (along X-axis). This
graph also reflects a linear growth with the increase in number of
DNA sequences. Figure 4 compares the performance of searching
patterns over encrypted DNA sequences of length four over the set
K. So in binary it is a string of length 24. Here also we plotted time of
search in seconds along Y-axis against the number of DNA sequences
to be matched along X-axis. This graph also shows roughly a linear
growth with the increase of number of encrypted sequences.

1,000 2,000 3,000 4,000 5,000

0.2

0.4

0.6

no of DNA sequences

Ti
m

e
(s

ec
on

ds
)

Fig. 3. Index generation graph for DNA sequences comparing index gen-
eration time using padded and masked hash chain technique with index
generation time using position integers

1,000 2,000 3,000 4,000 5,000

0.4

0.6

0.8

1

1.2

no of DNA sequences

Ti
m

e
(s

ec
on

ds
)

Fig. 4. Search time graph for encrypted DNA sequences comparing the search
time using hash chain technique with the search time using position integers

VII. CONCLUSION

With the increasing number of documents stored in cloud, search-
ing for the desired document can be a difficult and resource intensive
task. One solution may be to use symmetric searchable encryption
(SSE) which allows one party to outsource the storage of its data to
another party (a cloud) privately while enabling to search selectively
over it. In this paper we revisited the security definitions of [12]
and proposed a new lightweight SSE scheme Πs,s for string search.
We have shown that our scheme is secure under the non-adaptive
indistinguishability definition [12]. For active adversary, we propose
modification of the scheme Πs,s at the additional cost of memory at
client’s end and two rounds of communications for one modification
of document collection. Towards this direction, future research can
be performed to design efficient SSE scheme ideally with one round
of communication. With our scheme, server does not learn the
information related to word frequency and word positions except what
it can learn from the history.

We, for the first time, introduce new security notion in SSE, named,
search pattern indistinguishability. It may be observed that with non
adaptive indistinguishability security, although the keywords are guar-
anteed to be secure from the possible leakage from index, however
it does not guarantee the security from the possible leakage from
trapdoor. Towards this, we for the first time introduce probabilistic
trapdoor and prove that our scheme is secure under such criterion.
We have implemented our scheme for the first time to search over
phone symbols and validated it using the TIMIT dataset. We have
also implemented our scheme over DNA data of [1] and successfully
achieve pattern matching functionality over encrypted domain.

While dealing with string search, designing a SSE scheme satis-
fying adaptive-indistinguishability-security definition of [12] seems
intuitively impossible. This is because to generate an index in advance
which is consistent with future search, one unavoidable assumption
needed is the presence of all possible strings in each document.
This can be done by considering all permutations of keywords for
every document which makes the index size exponential in n for n-
document collection. According to the definition of [12], index size
is linear in n which is essential from efficiency point of view. From
the angle of this intuition, future research can be carried out to give
a formal proof in support of non-existence of adaptively secure SSE
scheme for string search. In this paper we have considered honest-
but-curious adversaries and active adversaries. Also, designing SSE
scheme for string search with adaptive-indistinguishability-security
against some newly defined adversary can be a future research
direction.

ACKNOWLEDGMENT

This research was partly supported by the Engineering and Physical
Sciences Research (EPSRC) UK project Trusted Things & Communi-
ties: Understanding Enabling A Trusted ioT Ecosystem and European
Commissions Horizon 2020 research and innovation project RED -
Alert under grant agreement No 740688.

REFERENCES

[1] https://github.com/iskana/pbwt-sec/tree/master/sample dat.
[2] http://www.fon.hum.uva.nl/david/ma ssp/2007/timit/train/dr5/fsdc0/.
[3] Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi

Kohno, Tanja Lange, John Malone-Lee, Gregory Neven, Pascal Paillier,
and Haixia Shi. Searchable Encryption Revisited: Consistency Proper-
ties, Relation to Anonymous IBE, and Extensions. volume 21, pages
350–391. Springer, 2008.

[4] Mihir Bellare, Alexandra Boldyreva, and Adam ONeill. Deterministic
and Efficiently Searchable Encryption. In Annual International Cryptol-
ogy Conference, pages 535–552. Springer, 2007.

2168-7161 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2018.2820014, IEEE
Transactions on Cloud Computing

12

[5] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe
Persiano. Public Key Encryption With Keyword Search. In Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques, pages 506–522. Springer, 2004.

[6] Dan Boneh, Eyal Kushilevitz, Rafail Ostrovsky, and William E Skeith III.
Public Key Encryption That Allows PIR Queries. In Annual Interna-
tional Cryptology Conference, pages 50–67. Springer, 2007.

[7] Ning Cao, Cong Wang, Ming Li, Kui Ren, and Wenjing Lou. Privacy-
Preserving Multi-Keyword Ranked Search Over Encrypted Cloud Data.
volume 25, pages 222–233. IEEE, 2014.

[8] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. Leakage-
Abuse Attacks Against Searchable Encryption. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications
Security, pages 668–679. ACM, 2015.

[9] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S Jutla, Hugo
Krawczyk, Marcel-Catalin Rosu, and Michael Steiner. Dynamic Search-
able Encryption in Very-Large Databases: Data Structures and Imple-
mentation. volume 2014, page 853. Citeseer, 2014.

[10] David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel-
Cătălin Roşu, and Michael Steiner. Highly-Scalable Searchable Sym-
metric Encryption With Support for Boolean Queries. In Advances in
Cryptology–CRYPTO 2013, pages 353–373. Springer, 2013.

[11] David Cash and Stefano Tessaro. The Locality of Searchable Symmetric
Encryption. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 351–368. Springer,
2014.

[12] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky.
Searchable Symmetric Encryption: Improved Definitions and Efficient
Constructions. volume 19, pages 895–934. IOS Press, 2011.

[13] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. Dynamic
Searchable Symmetric Encryption. In Proceedings of the 2012 ACM
conference on Computer and communications security, pages 965–976.
ACM, 2012.

[14] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptogra-
phy. CRC press, 2014.

[15] Mingchu Li, Wei Jia, Cheng Guo, Weifeng Sun, and Xing Tan. LPSSE:
Lightweight Phrase Search With Symmetric Searchable Encryption in
Cloud Storage. In Information Technology-New Generations (ITNG),
2015 12th International Conference on, pages 174–178. IEEE, 2015.

[16] Muhammad Naveed, Seny Kamara, and Charles V Wright. Inference
Attacks on Property-Preserving Encrypted Databases. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security, pages 644–655. ACM, 2015.

[17] Vasilis Pappas, Fernando Krell, Binh Vo, Vladimir Kolesnikov, Tal
Malkin, Seung Geol Choi, Wesley George, Angelos Keromytis, and
Steve Bellovin. Blind Seer: A Scalable Private DBMS. In 2014 IEEE
Symposium on Security and Privacy, pages 359–374. IEEE, 2014.

[18] Hoi Ting Poon and Ali Miri. Fast phrase search for encrypted cloud
storage. IEEE Transactions on Cloud Computing, 2017.

[19] Dawn Xiaoding Song, David Wagner, and Adrian Perrig. Practical
Techniques for Searches on Encrypted Data. In Security and Privacy,
2000. S&P 2000. Proceedings. 2000 IEEE Symposium on, pages 44–55.
IEEE, 2000.

[20] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. Practical
Dynamic Searchable Encryption With Small Leakage. In NDSS, vol-
ume 14, pages 23–26, 2014.

[21] Douglas R Stinson. Cryptography: Theory and Practice. CRC press,
2005.

[22] Yinqi Tang, Dawu Gu, Ning Ding, and Haining Lu. Phrase Search Over
Encrypted Data With Symmetric Encryption Scheme. In 2012 32nd
International Conference on Distributed Computing Systems Workshops,
pages 471–480. IEEE, 2012.

[23] Yoshinao Uchide and Noboru Kunihiro. Searchable symmetric encryp-
tion capable of searching for an arbitrary string. Wiley Online Library,
2016.

[24] Mi Wen, Rongxing Lu, Jingsheng Lei, Hongwei Li, Xiaoghui Liang,
and Xuemin Sherman Shen. SESA: An efficient searchable encryption
scheme for auction in emerging smart grid marketing. Security and
Communication Networks, 7(1):234–244, 2014.

[25] Steven Zittrower and Cliff C Zou. Encrypted Phrase Searching In The
Cloud. In Global Communications Conference (GLOBECOM), 2012
IEEE, pages 764–770. IEEE, 2012.

Indranil Ghosh Ray Indranil Ghosh Ray received
a B.Sc. degree (Mathematics Honors) from the
Calcutta University, in 2000, and a MCA (Master
of Computer Applications) degree in 2003 from
University of Kalyani. He worked in software in-
dustry for six years then as software engineer and
senior software engineer. He joined Indian Statistical
Institute, Kolkata, India as Junior Research Fellow in
2010 and was promoted to Senior Research Fellow
in 2013. He received a Ph.D degree in computer
science from Indian Statistical Institute in 2016. He

is a Research Associate with the Information Security Group, School of
Engineering and Mathematical Sciences, City University of London, UK since
June 2016. His research interests include Homomorphic Encryption and its
application in Privacy preserving Cloud Computing, Searchable Symmetric
Encryption (SSE), Public Key Encryption with keyword search, MDS codes
and its applications in Lightweight Cryptography, algebraic immunity of S-
Boxes based on Power Mappings but are not limited to these only.

Yogachandran Rahulamathavan Y. Rahulamath-
avan received a B.Sc. degree (first-class honors)
in electronic and telecommunication engineering
from the University of Moratuwa, Sri Lanka, in
2008, and a Ph.D. degree in signal processing from
Loughborough University, UK in 2011. From April
2008 to September 2008, he was an Engineer at
Sri Lanka Telecom, Sri Lanka and from November
2011 to March 2012, he was a Research Assistant
with the Advanced Signal Processing Group, School
of Electronic, Electrical and Systems Engineering,

Loughborough University, UK. He has worked as a Research Fellow with the
Information Security Group, School of Engineering and Mathematical Sci-
ences, City University London, UK. Moreover, Dr. Rahulamathavan received
a scholarship from Loughborough University to pursue his Ph.D. degree. He
is currently working as a Faculty member with Loughborough University,
UK. His research interests include signal processing, machine learning and
information security and privacy. http://www.drrahul.uk/

Muttukrishnan Rajarajan Muttukrishnan Rajara-
jan (Raj) is a Professor of Security Engineering at
City, University of London, United Kingdom. He
currently leads the Information Security Group at
City and his research interests are in the areas of
privacy preserving data analytics, Cloud Computing,
Internet of Things Security and Wireless Networks.
He has published well over 300 papers and continues
to be involved in the editorial boards and technical
programme committees of several international se-
curity and privacy conferences and journals. Raj is

a visiting Researcher at the British Telecommunications Security Research
and Innovation laboratory and is an advisory board member of the Institute
of Information Security Professionals (IISP), UK and acts as an advisor to the
UK Governments Verify.UK programme. He is a Senior Member of IEEE.

