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Fig. 15.  Transient from unity power factor to lagging power factor for H5 

inverter with proposed PWM. (a) Vg and Ig (×20). (b) Leakage current, 

ILeakage. 
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Fig. 16.  Transient from unity power factor to lagging power factor for 

HERIC inverter with proposed PWM. (a) Vg and Ig (×20). (b) Leakage 

current, ILeakage. 
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Fig. 17.  Transient from unity power factor to leading power factor for H5 

inverter with proposed PWM. (a) Vg and Ig (×20). (b) Leakage current, 

ILeakage. 
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Fig. 18.  Transient from unity power factor to leading power factor for 

HERIC inverter with proposed PWM. (a) Vg and Ig (×20). (b) Leakage 

current, ILeakage. 

 

The filters are made up of two inductors (Lf), each has a value of 

3mH. The switching frequency is 10kHz. 

Fig. 12 shows the simulated waveform of H5 and HERIC 

inverters with conventional and proposed modulation methods 

under unity power operation. As expected, both methods are  
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Fig. 19.  Vg (200V/div), Ig (5/div) and leakage current (250mA/div) for H5 

and HERIC inverters under unity power factor operation. (a) 

Conventional PWM. (b) Proposed PWM. 
 

working properly under unity power factor. However, the 

conventional modulation methods are not operating correctly 

for non-unity power factor (lagging and leading power factor).  

Current distortions are observed during negative power 

region, as shown in Fig. 13 (a) and Fig. 14 (a). As addressed in 

Section II, there is no current path for the current to flow during 

negative power region. On the other hand, the proposed PWMs 

allow both H5 and HERIC inverters to operate beyond unity 

power factor. As shown in Fig. 13 (b) and Fig. 14 (b), the 

discussed inverters with proposed PWMs are operating 

optimally for both leading and lagging power factor. In other 

words, the proposed modulation methods provide H5 and 

HERIC inverters with reactive power capability. 

The transient performance of the proposed PWM is studied 

and the result is shown in Fig. 15-18. It is clearly proven that 

the proposed modulation techniques are working properly 

during the transition period for both inverters, either from unity 

power factor to lagging power factor as shown in Fig. 15 (H5) 

and Fig. 16 (HERIC), or from unity power factor to leading 

power factor as shown in Fig. 17 (H5) and Fig. 18 (HERIC). 

Furthermore, the common-mode behaviors are compromised. 

As shown in Fig. 14-18, the leakage currents are minimized 

and are kept within the permissible limit even during reactive 

power operation. With proposed modulation techniques, both 

H5 and HERIC topologies are suitable for transformerless and 

reactive power applications without any modification on 

converter structures. 

V. EXPERIMENTAL RESULTS 

A 2kW universal inverter prototype was established for 

experimental validation of the performance analysis. The 

inverter specification is the same as those of simulation, as 

tabulated in Table I. Modulation techniques and control 

algorithms were implemented in DSP TMS320F28335 

controller. 

H5 and HERIC topologies with both conventional and 
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Fig. 20.  Vg (200V/div), Ig (5/div) and leakage current (250mA/div) for H5 

and HERIC inverters under leading power factor operation. (a) 

Conventional PWM. (b) Proposed PWM. 
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Fig. 21.  Vg (200V/div), Ig (5/div) and leakage current (250mA/div) for H5 

and HERIC inverters under lagging power factor operation. (a) 

Conventional PWM. (b) Proposed PWM. 

 

proposed PWMs are working properly for unity power factor, 

as presented in Fig 19. Nonetheless, the conventional 

modulation methods are not operating properly with non-unity 

power factor as illustrated in Fig. 20 (a) and Fig. 21 (a) for 

lagging and leading power factor respectively. Distortions are 

observed at the grid current in negative power region.  

The proposed modulation techniques, on the other hand, 

overcome this issue by introducing a new current path during 

negative power region as discussed earlier. As illustrated in Fig. 

20 (b) and Fig. 21 (b), the proposed modulation methods work 

optimally for non-unity power factor operation (leading and 

lagging power factor respectively). Furthermore, the 

common-mode behaviors of both H5 and HERIC inverters are 

not compromised. The leakage current is still low, keeping 

within the permissible level. The transient performance of the 
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Fig. 22.  Transient from unity power factor to leading power factor for H5 
inverter with proposed PWM: Vg (200V/div) and Ig (5/div).  
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Fig. 23.  Transient from unity power factor to leading power factor for 
HERIC inverter with proposed PWM: Vg (200V/div) and Ig (5/div).  
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Fig. 24.  Transient from unity power factor to lagging power factor for H5 
inverter with proposed PWM: Vg (200V/div) and Ig (5/div). 
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Fig. 25.  Transient from unity power factor to lagging power factor for 
HERIC inverter with proposed PWM: Vg (200V/div) and Ig (5/div). 
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TABLE II 

MEASURED EFFICIENCY OF THE DISCUSSED TOPOLOGIES 

 

 

 

 

 

 

 

 
Fig. 26.  Measured efficiency for conventional and proposed modulation 
techniques. 

 

proposed PWMs are investigated experimentally and the results 

are presented in Fig. 22-25. The results prove the dynamic 

response of the proposed PWM, from unity power factor to 

non-unity power factor.  

The efficiency is measured and tabulated in Table II. The 

efficiency is calculated based on Californian Efficiency (CEC). 
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The calculated CEC for conventional and proposed PWMs 

are 95.75% and 95.43% respectively for H5 inverter, and 96.56% 

and 96.02% for HERIC inverter, as illustrated in Fig. 26. As 

compared to conventional PWM, the proposed PWM has 

slightly lower efficiency due to additional switch counts. 

Despite additional switch counts, the proposed PWM provides 

both H5 and HERIC inverters with reactive power capability, 

without any modification of the converter structures. This 

makes the PV inverter design to be cost-effective and simple. 

VI. CONCLUSION 

In this paper, the general principles of reactive power 

generation for single-phase transformerless PV inverter are 

underpinned. In order to generate reactive power, a new current 

path is required in order to achieve zero-voltage state during 

negative power region. Based on the analysis, modulation 

techniques are proposed which provides bidirectional current 

path during freewheeling period. As a result, reactive power 

control is realized in H5 and HERIC inverters, without any 

modification on the converter structures. Furthermore, the 

common-mode behavior of which is not compromised. The 

CMV is maintained at constant which helps to suppress the 

leakage current. The overall performances were verified via 

simulation and experimental investigation. The results prove 

that with the proposed modulation method, H5 and HERIC 

inverters are suitable for transformerless and reactive power 

applications. The similar principles can be extended other 

single-phase transformerless PV inverter topologies. In short, 

the proposed working principles extend the conventional 

inverters applications to next-generation PV systems which 

require reactive power capability.  
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